
CAS CS 551 Streaming and Event-driven Systems
Course Syllabus Spring 2023

Instructor Name: Vasiliki Kalavri
Instructor Office Hours: Tue-Thu 5-6:30pm (CCDS 713, 7th floor).

Lectures: Tue-Thu 3:30 pm-4:45 pm, MCS B29
Discussions: Mon 9:05 am-9:55 am, CAS 116

Teaching Fellow: Emmanouil (Manos) Kritharakis
TA Office Hours: Tue 11:00 am-1:00pm, Open space 6th floor CCDS

IMPORTANT: Refrain from using email to reach the course staff. To contact the instructor or TA,
send a private Piazza post.

1. Overview

1.1 Course Description
Modern data-driven applications increasingly require continuous, low-latency processing of
large-scale, rapid data events such as clicks, search queries, online interactions, financial
transactions, traffic records, and sensor measurements. Distributed stream processing has
become highly relevant to industry and academia due to its capabilities to both improve
established data processing tasks and to facilitate novel applications with real-time
requirements. In this course, you will learn how to design, implement, and evaluate scalable and
reliable stream processing and event-driven applications.

Specifically, we will cover the following topics:

● Publish/Subscribe systems
● Architecture of distributed stream processing systems
● Dataflow programming
● Fault-tolerance and processing guarantees
● Streaming state management
● Windowing semantics and optimizations
● Complex event processing
● Microservice architectures
● Serverless functions and their relationship to stream processing

1.2 Course Objectives
At the end of the course, successful students will have gained skills and hands-on experience
on the following methods and technology:

● Design and implementation of dataflow stream processing applications

1

https://www.bu.edu/classrooms/classroom/mcs-b29/
https://www.bu.edu/classrooms/classroom/cas-116/


● Message queues, log-based message brokers, and publish/subscribe systems
● Ability to comprehensively compare the features, architecture, and processing

guarantees of modern streaming systems
● Implementing, deploying, and evaluating event-based applications with Apache Flink

and Apache Kafka.
● Operations for scalable and reliable stream processing, including logging, monitoring,

debugging, and upgrading
streaming applications

● A solid understanding of the challenges and trade-offs one needs to consider when
designing and deploying
streaming applications 
Further, students will be exposed to recent developments in stream processing research
through paper assignments and presentations. The collaborative semester-long project
will prepare them for the practical aspects of their future careers and expose them to
project management tools and software engineering best practices.

1.3 Prerequisites
CAS CS 112 and CAS CS 210; CAS CS 451 and CAS CS 460 or consent of instructor.   
To be successful in this course, students will need to have strong programming skills, a solid
understanding of Computer Systems fundamentals (CS 210) and some prior experience with
object-oriented programming / Java (CS 211). Familiarity with Distributed Systems (CS 451) and
Database Systems (CS 460) is highly recommended.

2. Instructional Format, Course Pedagogy, and Approach to Learning

2.1 Courseware
• We will use the course website to maintain an up-to-date class schedule:
https://vasia.github.io/cs551/index.html
• We will use Piazza for announcements, questions, discussions, and all other communication:
https://piazza.com/bu/spring2023/cascs551
• We will use Gitlab for the hands-on sessions, discussions, and the semester projects:
https://cs551-gitlab.bu.edu/

• Sign up for an account using your BU email.
• Once approved, you will be able to login and create projects.

• We will use Gradescope for assignment submissions:
https://www.gradescope.com/courses/495250

2.2 Lectures
Lectures will be held during the assigned time slots. Section 4 of the syllabus provides the topic
and assigned readings for each lecture. You are expected to complete the readings before the
day of the lecture and actively participate in class discussions. Lecture slides will be made
available on the class website prior to the lectures or shortly after.

2

https://vasia.github.io/cs551/index.html
https://piazza.com/bu/spring2023/cascs551
https://cs551-gitlab.bu.edu/
https://www.gradescope.com/courses/495250


2.3 Discussions
Students are expected to attend the weekly discussion section they have been assigned to. The
Teaching Fellows will lead the discussion sessions. The objectives are: to present material on
the required tools such as Apache Flink, Apache Kafka, and Stateful Functions, that reinforce
the concepts covered in the lectures, and answer questions (or provide clarifications) regarding
the assignments and projects. The Teaching Fellow will post information to Piazza as necessary.
In addition to the discussions, the Teaching Fellow will hold weekly Office Hours.

2.3.1 Software requirements
During the discussion sessions, you will solve a set of programming exercises using Apache
Flink and Apache Kafka. Use your own laptop or desktop computer and make sure to set up
your environment correctly as described below.

You can develop and execute Flink applications on Linux, macOS, and Windows. However,
UNIX-based setups have complete tooling support and are generally preferred by Flink
developers. All assignments assume a UNIX-based setup. If you are a Windows user, you
are advised to use Windows subsystem for Linux (WSL), Cygwin, or a Linux virtual machine to
run Flink in a UNIX environment.

To setup and run Flink, you additionally need:

● A Java 8 or 11 installation. To develop Flink applications and use its DataStream API in
Java or Scala you will need a Java JDK. A Java JRE is not sufficient!

● Apache Maven 3.x. Flink provides Maven archetypes to bootstrap new projects.
● An IDE for Java and/or Scala development. Common choices are IntelliJ IDEA, Eclipse,

or Netbeans with appropriate plugins installed. We recommend IntelliJ IDEA. 

Even though Apache Flink is a distributed data processing system, you will typically develop
and run initial tests on your local machine. This makes development easier and simplifies cluster
deployment, as you can run the exact same code in a cluster environment without making any
changes.

2.4 Classroom recordings
Class sessions might be recorded for the benefit of registered students who are unable to
attend live sessions (either in person or remotely) due to illness. Recorded sessions will be
made available to registered students ONLY via their password-protected BU account. Students
may not share such sessions with anyone not registered in the course and may certainly not
repost them in a public platform. Students have the right to opt-out of being part of the class
recording. Please consult the following site for further details:
https://digital.bu.edu/lfa-classroom-recordings.

2.5 Course Materials
There is no required textbook for this class. Slides, lecture notes, and other publicly available
resources will be published on the course website and on Piazza. A list of readings is provided
in the course website: https://vasia.github.io/cs551/readings.html. You should be able to access

3

https://digital.bu.edu/lfa-classroom-recordings
https://vasia.github.io/cs551/readings.html


all readings when connected to the campus network. Please contact the instructor if any of the
listed readings is unavailable or inaccessible.

3. Assignments and Grading Criteria

3.1 Semester Project
This class is highly collaborative and research-oriented. During the first week, you will be
provided with a list of semester projects and you will be asked to select your top-3 preferences.
You will then be assigned to a project team with 3-5 students. During the semester, the team will
be working together to deliver:

● A design document outlining (1) the project goals, (2) an implementation and
evaluation plan, (3) the task distribution among team members.

● A midterm project demo. Demos will be presented during class time.
● A final demo to be presented during the last week of class.
● The project’s gitlab repository, including code, tests, automation and plotting scripts,

and documentation.

3.2 Paper assignments and guest lectures
During the semester, we will read and discuss various technical papers. For each paper, you will
be asked to submit:

1. a short summary, describing the core ideas of the paper

2. a list of questions to be discussed during lecture time. These deliverables are individual.

We will also host 2 guest lectures. You are expected to participate in the guest lectures by
asking questions.

3.3 Grading Scheme
Your final grade will be determined as follows: 

1. Participation & effort (20%):
- In-class participation.
- Discussion participation.
- Piazza contributions.
- Git activity (project + discussions).
- Group Meeting minutes.
- Office Hours participation.
 

2. Paper readings & guest lectures (20%):
- Paper summaries, questions (10%)
- Paper discussion participation (5%)
- Guest lecture participation (5%)

4



3. Semester project (60%) (in teams of 3-5 students):
- Design document (maximum 3 pages) 5%.
- Midterm demo 20%.
- Final demo and deliverables: 35%.
The final deliverables include (1) the full code implementing the project tasks as defined in the
project design document, (2) auxiliary code for data pre-processing, deployment, and testing,
(3) complete supporting documentation.

Individual contributions to collaborative assignments will be assessed by taking into account the
following:
- The quality of individual task deliverables outlined in the project design document.
- The individual’s ability to answer questions about the project during demo presentations and
office hours.
- The individual’s performance during the paper and demo presentations.
- The individual’s contribution to the project’s gitlab repository (git history).

There is no final exam at the end of the course.

4. Class and University Policies

4.1 Homework submission
All assignments and the project deliverables will be submitted via the course Gitlab. All
deliverables are due by 11:59pm on the day of the respective deadline.

4.2 Attendance
Students are expected to attend each class session unless they have a valid reason for being
absent. Acceptable excused absences include observing religious holidays and illness. In such
cases, students are advised to contact the instructor as soon as possible, so that reasonable
accommodations can be provided. Please review the BU attendance policy and the BU Policy
on Religious Observance for more information.

4.3 Late work policy
Students who submit homework late will only be eligible for up to 50% of the original score.

4.4 Academic conduct
Academic standards and the code of academic conduct are taken very seriously at our
university. Please take the time to review the CAS Academic Conduct Code:
http://www.bu.edu/academics/resources/academic-conduct-code/ and the GRS Academic
Conduct Code: http://www.bu.edu/cas/students/graduate/grs-forms-policies-procedures/
academic-discipline-procedures/. Please review the sections regarding plagiarism and cheating
carefully. Copies of the CAS Academic Conduct Code are also available in room CAS 105. A

5



student suspected to violate this code will be reported to the Academic Conduct Committee, and
if found culpable, the student will receive a grade of "F" for the course 

All assignments must be completed individually, unless instructed otherwise. Discussion with
fellow students via Piazza or in-person are encouraged, but presenting the work of another
person as your own is expressly forbidden. This includes “borrowing”, “stealing”, copying
programs/solutions or parts of them from others. Note that we may use an automated plagiarism
checker. Cheating will not be tolerated under any circumstances.

Any resources, including material from other students (current or past), that are used, beyond
the text or that provided by the TF or professor must be clearly acknowledged and attributed.
Using such material may at the discretion of the TF or professor result in a lower grade.
However, if such material is used and not acknowledged and 12 attributed, it will automatically
be considered as possible academic misconduct.

5. Accommodations 

If you are a student with a disability or believe you might have a disability that requires
accommodations, please contact the Office for Disability Services (ODS) at (617) 353-3658 or
access@bu.edu to coordinate any reasonable accommodation requests. ODS is located at 25
Buick Street on the 3rd floor.

6



6. Detailed Schedule

The rest of the syllabus is tentative and might be updated during the semester. We will be
keeping you informed of any changes made to the readings or assignment deadline via Piazza.

Make sure to become familiar with the Official Semester Dates.  Some of the critical Semester
Dates are:

● The Last Day to DROP Classes (without a ‘W’ grade) February 23, 2023.
● The Last Day to DROP Classes (with a ‘W’ grade) March 31, 2023.

Date Topic Readings Assignment

1/19 Introduction to stream processing [1]

1/23 Disc #1: How to read a paper

1/24 Publish/Subscribe systems [2]

1/26 Paper 1: Stream ingestion & indexing [3] Projects announced

1/30 Disc #2: Intro to Flink

31/1 Dataflow stream processing systems [4]

2/2 Paper 2: Realtime data processing [5] Project selection due

2/6 Disc #3: Intro to Kafka

2/7 Notions of time [6]

2/9 Paper 3: Tracking computation progress [7]

2/13 Disc #4: Writing Flink programs &
DataStream API

2/14 Windowing semantics [8]

2/16 Paper 4: Window aggregation [9] Design document due

2/21 Disc #5: Windows & event-time

2/23 Streaming state management [10]

2/27 Disc #6: State management

2/28 Paper 5: Consistent regions [11]

3/2 Distributed snapshots [12]

7



3/13 Disc #7: Flink + ML

3/14 Guest Lecture: Confluent @ CCDS 701

3/16 Paper 6: Exactly-once fault tolerance [13]

3/20 Disc #8: Checkpoints

3/21 NO CLASS Midterm presentation due

3/23 Midterm project presentations
(Teams 1, 2, 3a, 4)

3/27 Disc #9: Reconfiguration & upgrading

3/28 Midterm project presentations
(Teams 3b, 6, 8)

3/30 Guest Lecture - Materialize @ CCDS TBD

4/3 Disc #10: Metrics & monitoring

4/4 Flow control & backpressure [14]

4/6 Elasticity & state migration [15]

4/10 Disc #11: Flink Stateful Functions

4/11 Paper 7: State migration [16]

4/13 Stream query optimization [17]

4/18 NO CLASS

4/19 Disc #12: Project hacking

4/20 Stateful functions

4/24 Disc #13: Project hacking

4/25 Emerging topics in data stream
processing

4/26 Final demos due

4/27 Demo presentation (teams 1-4)

5/1 Disc #14: Project hacking

5/2 Demo presentation (teams 5-8) Final project repositories
due

8



Readings
[1] Streaming 101: https://www.oreilly.com/radar/the-world-beyond-batch-streaming-101/
[2] The many faces of publish/subscribe: https://dl.acm.org/doi/pdf/10.1145/857076.857078
[3] Data Ingestion for the Connected World:
https://people.csail.mit.edu/tatbul/publications/sstore_cidr17.pdf
[4] Streaming 102: https://www.oreilly.com/radar/the-world-beyond-batch-streaming-102/
[5] Realtime Data Processing at Facebook
https://research.facebook.com/publications/realtime-data-processing-at-facebook/
[6] Flexible time management in data stream systems:
https://dl.acm.org/doi/pdf/10.1145/1055558.1055596
[7] Watermarks in Stream Processing Systems: Semantics and Comparative Analysis of
Apache Flink and Google Cloud Dataflow https://www.osti.gov/servlets/purl/1823361
[8] SECRET: a model for analysis of the execution semantics of stream processing systems:
https://dl.acm.org/doi/pdf/10.14778/1920841.1920874
[9] Efficient Window Aggregation with General Stream Slicing:
https://openproceedings.org/2019/conf/edbt/EDBT19_paper_171.pdf
[10] State Management in Apache Flink: https://dl.acm.org/doi/10.14778/3137765.3137777
[11] Consistent regions: guaranteed tuple processing in IBM streams:
https://sariyuce.com/papers/vldb16.pdf
[12] Lightweight Asynchronous Snapshots for Distributed Dataflows:
https://arxiv.org/pdf/1506.08603.pdf
[13] MillWheel: fault-tolerant stream processing at internet scale:
https://research.google/pubs/pub41378/
[14] A Survey on the Evolution of Stream Processing Systems:
https://arxiv.org/pdf/2008.00842.pdf
[15] Three steps is all you need: fast, accurate, automatic scaling decisions for distributed
streaming dataflows: https://www.usenix.org/system/files/osdi18-kalavri.pdf
[16] Meces: Latency-efficient Rescaling via Prioritized State Migration for Stateful
Distributed Stream Processing Systems
https://www.usenix.org/system/files/atc22-gu-rong.pdf
[17] A catalog of stream processing optimizations: https://dl.acm.org/doi/10.1145/2528412

9

https://www.oreilly.com/radar/the-world-beyond-batch-streaming-101/
https://dl.acm.org/doi/pdf/10.1145/857076.857078
https://people.csail.mit.edu/tatbul/publications/sstore_cidr17.pdf
https://www.oreilly.com/radar/the-world-beyond-batch-streaming-102/
https://research.facebook.com/publications/realtime-data-processing-at-facebook/
https://dl.acm.org/doi/pdf/10.1145/1055558.1055596
https://www.osti.gov/servlets/purl/1823361
https://dl.acm.org/doi/pdf/10.14778/1920841.1920874
https://openproceedings.org/2019/conf/edbt/EDBT19_paper_171.pdf
https://dl.acm.org/doi/10.14778/3137765.3137777
https://sariyuce.com/papers/vldb16.pdf
https://arxiv.org/pdf/1506.08603.pdf
https://research.google/pubs/pub41378/
https://arxiv.org/pdf/2008.00842.pdf
https://www.usenix.org/system/files/osdi18-kalavri.pdf
https://www.usenix.org/system/files/atc22-gu-rong.pdf
https://dl.acm.org/doi/10.1145/2528412

