Window evaluation strategies in Flink
using the RocksDB state backend

Introduction

Window operators are integral to streaming applications. They enable evaluation of blocking
operators, such as aggregations and joins on streams. Further, they allow expressing
computations on the most recent stream history, so that applications can be continuously
updated with fresh results. Windowing splits an unbounded input stream into a series of
bounded sets of records, which we simply refer to as windows. Flink’s default window operator
represents each window as a key-value pair on RocksDB, where the key is a unique bucket id
and the value represents the window contents. While this representation is simple, it is not
always efficient, especially when windows have overlap. In this project, you will design,
implement, and evaluate alternative window operators in Apache Flink and compare their
performance with Flink’s default windowing mechanism.

Background

We define a window operator with a size parameter, which indicates how many time units
belong to a window, and an optional slide parameter, which indicates how often a new window
starts. A particular window can be identified by its start and end timestamps. A window
evaluation function defines the computation logic to be applied to the window contents. We say
that a window triggers when the system's notion of time arrives at its end timestamp. Evaluation
functions can be applied eagerly, upon receiving a new record that belongs to the window, or
lazily, on trigger.

A window operator is responsible for grouping incoming records into buckets and making the
evaluation function results available in the output whenever a window triggers. The figure below
shows three alternative window strategies. Regardless of the strategy used, the operator
performs two types of processing: (i) upon receiving a new record on its input, and (ii) upon
receiving a trigger.

s o B

SR PP | A ,1 {DF

l—‘ window size @—/'/):‘ '
window size teee d——>
pane size

Window ID: On record, Record buffer: On Slicing: On record, map to
map to corresponding record, append to state. corresponding pane. On
windows. On trigger, find On trigger, find records trigger, find the pane IDs
the window ID. within window bounds. within window bounds.

CS551 Streaming and event-based systems - Spring 2023

The window ID strategy organizes records into windows by assigning them IDs (start or end
timestamp). When a record arrives at the input, the operator calls an assigner function that
computes a list of at most size/slide window IDs the record belongs to. The record is
inserted to the corresponding state of each window in the list. On trigger, window contents can
be easily retrieved using the ID.

The record buffer strategy stores incoming records in a buffer ordered by timestamp. When a
window triggers, the operator scans the buffer and retrieves all records whose timestamp falls
inside the window bounds.

Slicing organizes records into smaller units, called panes. A pane is the maximum shareable
unit across windows and its size is computed as gcd (size, slide). This guarantees thata
record belongs to only one pane and that every window can be composed by a set of
consecutive panes. When a record arrives, the operator calls an assigner function that
computes the pane ID and adds the record to its state. On trigger, it retrieves size/paneSize
panes to assemble the window contents. If the evaluation function supports pre-aggregation, it
can be eagerly applied on record arrival to maintain partially aggregated results per pane.
Those are combined into the global aggregate when the window fires.

Project goal

The goal of this project is to design and implement two alternative window operators in Flink
using the record buffer and slicing strategies. You will have to think about how to best represent
the state of these operators as key-value pairs in RocksDB and how to minimize latency when a
new record arrives and when the window triggers. You will evaluate the performance of the new
operators and Flink’s default implementation with respect to the window length, ratio of length to
slide, and using different window evaluation functions.

Required sKkill set

e Experience with Java programming.

Where to start

e Read the paper “Efficient Window Aggregation with General Stream Slicing”:
https://hpi.de/fileadmin/user_upload/fachgebiete/rabl/publications/2019/GeneralStreamsS|
icingEDBT2019.pdf. This paper evaluates different window strategies in memory. In this
project, you will extend this analysis for window state backed by RocksDB.

e Clone the Flink source code and find the classes that implement the window operators.
How is the state represented and accessed in RocksDB?

CS551 Streaming and event-based systems - Spring 2023

https://hpi.de/fileadmin/user_upload/fachgebiete/rabl/publications/2019/GeneralStreamSlicingEDBT2019.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/rabl/publications/2019/GeneralStreamSlicingEDBT2019.pdf

	Window evaluation strategies in Flink using the RocksDB state backend
	Introduction
	Background
	Project goal
	Required skill set
	Where to start

