
Addressing transient workload spikes
with Cloud bursting in Apache Flink

Introduction
Due to the push-based nature of streaming inputs from external data sources, stream
processors have no control over the rate of incoming events. Satisfying quality of service (QoS)
under workload variations has been a long-standing research challenge in stream processing
systems. To avoid performance degradation when input rates exceed system capacity, the
stream processor needs to take actions that will ensure sustaining the load. For example,
systems like Flink employ flow control mechanisms, like back-pressure. In a network of
consumers and producers such as a streaming execution graph with multiple operators,
back-pressure propagates to upstream operators, eventually reaching the data stream sources.

Unfortunately, back-pressure mechanisms have two major disadvantages. First, back-pressure
has the effect that all operators slow down to match the processing speed of the slowest
consumer. Second, to ensure no data loss, a persistent input message queue, such as Apache
Kafka, and adequate storage space are required. In this project, you will investigate an
alternative approach that relies on serverless computing.

Background
Serverless computing is a cloud computing model where the cloud provider is responsible for
the server management and the user can run their code without provisioning, scaling, and
maintaining servers. Instead, the user is charged based on the number of requests and the
duration of the execution. The most common use case for serverless computing is running
event-driven, stateless, and short-lived functions. These functions are often called "serverless
functions" or "lambda functions."

“Cloud bursting” is a technique used to handle high traffic or computational load of an
application. It allows an organization to run their application on-premises, and when the load
exceeds the capacity of the on-premises infrastructure, additional resources are automatically
acquired from a cloud provider. When the load on the on-premises infrastructure exceeds a
predefined threshold, the application automatically starts using the “burst” capacity. The cloud
resources are used until the load drops below the threshold, at which point the application stops
using the cloud resources and goes back to using the base capacity.

CS551 Streaming and event-based systems - Spring 2023

1

Project goal
The goal of this project is to design and implement an adaptive Flink application that leverages
the “cloud bursting” technique as an alternative to back-pressure. Your application should
automatically detect workload variations and offload excess load to AWS lambda functions. You
will first develop a controller that will continuously collect execution metrics and monitor the
dataflow performance and input rate. If excess workload is detected, the controller will have to
decide whether cloud bursting is necessary. In that case, it will be responsible for spawning
lambda functions, collecting their results, and merging them with the results produced by the
dataflow running on your local machine.

Fig 1: Backpressure propagates from the bottleneck operator to the sources, slowing down the
entire dataflow. Cloud bursting can offload the excess computation to the cloud.

Required skill set
●​ Experience with Java programming.
●​ Experience with AWS is a plus.

Where to start
●​ Read about serverless computing and lambdas https://aws.amazon.com/lambda/ and

figure out how to spawn functions.
●​ Write a simple Flink benchmark that allows you to change the input rate.

CS551 Streaming and event-based systems - Spring 2023

2

https://aws.amazon.com/lambda/

	Addressing transient workload spikes with Cloud bursting in Apache Flink
	Introduction
	Background
	Project goal
	
	Required skill set
	Where to start

