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• To recover from failures, the system needs to 
• restart failed processes 
• restart the application and recover its state
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Checkpointing guards the state from failures, 
but what about process failure?

High-availability
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Flink processes
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• Flink requires a sufficient number of processing slots in order to 
execute all tasks of an application. 

• The JobManager cannot restart the application until enough slots 
become available. 

• Restart is automatic if there is a ResourceManager, e.g. in a YARN setup 
• A manual TaskManager re-start or a backup is required in standalone mode 

• The restart strategy determines how often the JobManager tries to 
restart the application and how long it waits between restart attempts.
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TaskManager failures
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• The JobManager is a single point of failure Flink applications 
• It keeps metadata about application execution, such as pointers to completed checkpoints. 

• A high-availability mode migrates the responsibility and metadata for a 
job to another JobManager in case the original JobManager disappears. 

• Flink relies on Apache ZooKeeper for high-availability 
• coordination and consensus services, e.g. leader election 

• The JobManager writes the JobGraph and all required metadata, such 
as the application’s JAR file, into a remote persistent storage system 

• Zookeeper also holds state handles and checkpoint locations
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JobManager failures
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When the JobManager fails all tasks are automatically 
cancelled. 

The new JobManager performs the following steps: 

1. It requests the storage locations from ZooKeeper to 
fetch the JobGraph, the JAR file, and the state handles 
of the last checkpoint from remote storage. 

2. It requests processing slots. 

3. It restarts the application and resets the state of all its 
tasks to the last completed checkpoint.

Highly available Flink setup
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To avoid repeating failures, Flink supports the following restart strategies: 

• The fixed-delay strategy restarts an application a fixed number of 
times and waits a configured time between two restart attempts. 

• The failure-rate strategy restarts an application as long as a 
configurable failure rate is not exceeded. The failure rate is specified 
as the maximum number of failures within a time interval. 

• e.g. you can configure that an application be restarted as long as it did not fail more than 
three times in the last ten minutes. 

• The no-restart strategy does not restart an application, but fails it 
immediately.
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Restart strategies
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Reconfiguration with 
Savepoints
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• Change parallelism 
• scale out to process increased load 
• scale in to save resources 

• Fix bugs or change business logic 

• Optimize execution plan 

• Change operator placement 
• skew and straggler mitigation 

• Migrate to a different cluster or software version
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Reconfiguration cases



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Streaming applications are long-running 
• Workload will change 
• Conditions might change 
• State is accumulated over time
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Why is it necessary?
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• Ensure result correctness 
• reconfiguration mechanism often relies on fault-tolerance mechanism 

• State re-partitioning and migration 
• minimize communication 
• keep duration short 
• minimize performance disruption, e.g. latency spikes 
• avoid introducing load imbalance 

• Resource management 
• utilization, isolation 

• Automation 
• continuous monitoring 
• bottleneck detection 
• stability, accuracy
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Challenges of reconfiguration
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• Detect environment changes: external workload and system 
performance 

• Identify bottleneck operators, straggler workers, skew 
• Enumerate scaling actions, predict their effects, and decide which and 

when to apply

• Allocate new resources, spawn new processes or release unused 
resources, safely terminate processes 

• Adjust dataflow channels and network connections 
• Re-partition and migrate state in a consistent manner 
• Block and unblock computations to ensure result correctness
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Control: When and how much to adapt?
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Control: When and how much to adapt?

Mechanism: How to apply the re-configuration?
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Reconfiguring Flink 
applications
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• A consistent and complete snapshot of an application’s state 
• Checkpoints are automatically created and removed by Flink. 
• Savepoints are never automatically removed.
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savepoint

Savepoints: user-triggered checkpoints
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• To decrease or increase the parallelism of an application: 
• Take a savepoint 
• Cancel the application 
• Restart it with an adjusted parallelism 

• The state is automatically redistributed to the new set of parallel tasks 

• For exactly-once results, we need to prevent a checkpoint to 
complete after the savepoint! 

• Use the integrated savepoint-and-cancel command
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Scaling from a Savepoint
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• When scaling stateful operators, state needs to be repartitioned and 
assigned to more or fewer parallel tasks 

• Scaling different types of state 
• Operators with keyed state are scaled by repartitioning keys 
• Operators with operator list state are scaled by redistributing the list entries. 
• Operators with operator broadcast state are scaled up by copying the state to new tasks.
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Scaling stateful operators



🤧😷🤒 Vasiliki Kalavri | Boston University 202018

Scaling keyed state
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Scaling list state
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Kafka offsets re-distribution
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Scaling broadcast state
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State re-distribution
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• Read all the previous subtask state from the checkpoint in all sub-tasks 
and filter out the matching keys for each sub-task 

• Sequential read pattern 
• Tasks read unnecessary data and the distributed file system receives high load of read 

requests 

• Track the state location for each key in the checkpoint, so that tasks 
locate and read the matching keys only 

• Avoids reading irrelevant data 
• Requires a materialized index for all keys, i.e. a key-to-read-offset mapping, which can 

potentially grow very large 
• Large amount of random I/O
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Naive approaches
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Reconfiguring keyed stateful operators requires preserving the 
key semantics: 

• Existing state for a particular key and all future events with this 
key must be routed to the same parallel instance 

• Some kind of hashing is typically used 

• Maintaining routing tables or an index for all key mappings is 
usually impractical 

• Skewed load is challenging to handle with hashing
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• Load balance 
• memory: load in terms of maintained state 
• computation: load in terms of computation 
• communication: load in terms of flow size in the input channel of each parallel task 

• Partitioning function performance 
• space required to implement routing 
• lookup cost 

• Migration performance 
• re-assignment computation cost 
• state movement cost
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State redistribution objectives
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• Evenly distributes keys across parallel tasks 

• Fast to compute, no routing state 

• High migration cost 
• When a new node is added, state is shuffled across existing and new nodes 
• Random I/O and high network communication 

• Not suitable for adaptive applications
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Uniform hashing



🤧😷🤒 Vasiliki Kalavri | Boston University 202027



🤧😷🤒 Vasiliki Kalavri | Boston University 202027

Can we do better?
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Consistent hashing
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Consistent hashing
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• It ensures state is not moved across nodes that are present before and 
after the migration 

• When a new node joins, it becomes responsible for data items from 
multiple of the existing nodes 

• When a node leaves, its data items are distributed over the existing 
nodes 

• On average M/N partitions are moved when the Nth node is inserted or 
removed from a system with M partitions
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Consistent hashing
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• State is mapped into key-groups 

• Key-groups are mapped to subtasks as ranges 
• On restore, reads are sequential within each key-group, and often across multiple key-groups 
• The metadata of key-group-to-subtask assignments are small. No need to maintain explicit 

lists of key-groups, only range boundaries. 

• The maximum parallelism parameter of an operator defines the number 
of key groups into which the keyed state of the operator is split. 

• The number of key groups limits the maximum number of parallel tasks to which keyed state 
can be scaled. 

• Trade-off between flexibility in rescaling and the maximum overhead involved in indexing and 
restoring the state
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Apache Flink Key-groups
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val env = StreamExecutionEnvironment.getExecutionEnvironment

// set the maximum parallelism for this application
env.setMaxParallelism(512)

val alerts: DataStream[(String, Double, Double)] =
keyedSensorData
.flatMap(new TemperatureAlertFunction(1.1))
// set the maximum parallelism for this operator
.setMaxParallelism(1024)
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Setting the max parallelism
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• A Deep Dive into Rescalable State in Apache Flink: https://
flink.apache.org/features/2017/07/04/flink-rescalable-state.html 

• Buğra Gedik. Partitioning functions for stateful data parallelism in 
stream processing. (VLDB Journal 23, 4, 2014). 
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