
🤧😷🤒 Vasiliki Kalavri | Boston University 2020

CS 591 K1: 
Data Stream Processing and Analytics

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu 

Spring 2020

3/31: High-availability & reconfiguration

mailto:vkalavri@bu.edu


🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• To recover from failures, the system needs to 
• restart failed processes 
• restart the application and recover its state

2

Checkpointing guards the state from failures, 
but what about process failure?

High-availability



🤧😷🤒 Vasiliki Kalavri | Boston University 20203

Flink processes



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• Flink requires a sufficient number of processing slots in order to 
execute all tasks of an application. 

• The JobManager cannot restart the application until enough slots 
become available. 

• Restart is automatic if there is a ResourceManager, e.g. in a YARN setup 
• A manual TaskManager re-start or a backup is required in standalone mode 

• The restart strategy determines how often the JobManager tries to 
restart the application and how long it waits between restart attempts.

4

TaskManager failures



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• The JobManager is a single point of failure Flink applications 
• It keeps metadata about application execution, such as pointers to completed checkpoints. 

• A high-availability mode migrates the responsibility and metadata for a 
job to another JobManager in case the original JobManager disappears. 

• Flink relies on Apache ZooKeeper for high-availability 
• coordination and consensus services, e.g. leader election 

• The JobManager writes the JobGraph and all required metadata, such 
as the application’s JAR file, into a remote persistent storage system 

• Zookeeper also holds state handles and checkpoint locations

5

JobManager failures



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

When the JobManager fails all tasks are automatically 
cancelled. 

The new JobManager performs the following steps: 

1. It requests the storage locations from ZooKeeper to 
fetch the JobGraph, the JAR file, and the state handles 
of the last checkpoint from remote storage. 

2. It requests processing slots. 

3. It restarts the application and resets the state of all its 
tasks to the last completed checkpoint.

Highly available Flink setup



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

To avoid repeating failures, Flink supports the following restart strategies: 

• The fixed-delay strategy restarts an application a fixed number of 
times and waits a configured time between two restart attempts. 

• The failure-rate strategy restarts an application as long as a 
configurable failure rate is not exceeded. The failure rate is specified 
as the maximum number of failures within a time interval. 

• e.g. you can configure that an application be restarted as long as it did not fail more than 
three times in the last ten minutes. 

• The no-restart strategy does not restart an application, but fails it 
immediately.

7

Restart strategies



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Reconfiguration with 
Savepoints



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• Change parallelism 
• scale out to process increased load 
• scale in to save resources 

• Fix bugs or change business logic 

• Optimize execution plan 

• Change operator placement 
• skew and straggler mitigation 

• Migrate to a different cluster or software version

9

Reconfiguration cases



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Streaming applications are long-running 
• Workload will change 
• Conditions might change 
• State is accumulated over time

10

ev
en

ts
/s

time

rate decrease

ev
en

ts
/s

time

throughput 
degradation

ev
en

ts
/s

time

rate increase

: input rate : throughput

Why is it necessary?



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• Ensure result correctness 
• reconfiguration mechanism often relies on fault-tolerance mechanism 

• State re-partitioning and migration 
• minimize communication 
• keep duration short 
• minimize performance disruption, e.g. latency spikes 
• avoid introducing load imbalance 

• Resource management 
• utilization, isolation 

• Automation 
• continuous monitoring 
• bottleneck detection 
• stability, accuracy

11

Challenges of reconfiguration



🤧😷🤒 Vasiliki Kalavri | Boston University 202012

• Detect environment changes: external workload and system 
performance 

• Identify bottleneck operators, straggler workers, skew 
• Enumerate scaling actions, predict their effects, and decide which and 

when to apply

• Allocate new resources, spawn new processes or release unused 
resources, safely terminate processes 

• Adjust dataflow channels and network connections 
• Re-partition and migrate state in a consistent manner 
• Block and unblock computations to ensure result correctness



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Control: When and how much to adapt?

12

• Detect environment changes: external workload and system 
performance 

• Identify bottleneck operators, straggler workers, skew 
• Enumerate scaling actions, predict their effects, and decide which and 

when to apply

• Allocate new resources, spawn new processes or release unused 
resources, safely terminate processes 

• Adjust dataflow channels and network connections 
• Re-partition and migrate state in a consistent manner 
• Block and unblock computations to ensure result correctness



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Control: When and how much to adapt?

Mechanism: How to apply the re-configuration?

12

• Detect environment changes: external workload and system 
performance 

• Identify bottleneck operators, straggler workers, skew 
• Enumerate scaling actions, predict their effects, and decide which and 

when to apply

• Allocate new resources, spawn new processes or release unused 
resources, safely terminate processes 

• Adjust dataflow channels and network connections 
• Re-partition and migrate state in a consistent manner 
• Block and unblock computations to ensure result correctness



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Reconfiguring Flink 
applications



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• A consistent and complete snapshot of an application’s state 
• Checkpoints are automatically created and removed by Flink. 
• Savepoints are never automatically removed.

14

savepoint

Savepoints: user-triggered checkpoints



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• To decrease or increase the parallelism of an application: 
• Take a savepoint 
• Cancel the application 
• Restart it with an adjusted parallelism 

• The state is automatically redistributed to the new set of parallel tasks 

• For exactly-once results, we need to prevent a checkpoint to 
complete after the savepoint! 

• Use the integrated savepoint-and-cancel command

15

Scaling from a Savepoint



🤧😷🤒 Vasiliki Kalavri | Boston University 202016



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• When scaling stateful operators, state needs to be repartitioned and 
assigned to more or fewer parallel tasks 

• Scaling different types of state 
• Operators with keyed state are scaled by repartitioning keys 
• Operators with operator list state are scaled by redistributing the list entries. 
• Operators with operator broadcast state are scaled up by copying the state to new tasks.

17

Scaling stateful operators



🤧😷🤒 Vasiliki Kalavri | Boston University 202018

Scaling keyed state



🤧😷🤒 Vasiliki Kalavri | Boston University 202019

Scaling list state



🤧😷🤒 Vasiliki Kalavri | Boston University 202020

Kafka offsets re-distribution



🤧😷🤒 Vasiliki Kalavri | Boston University 202021

Scaling broadcast state



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

State re-distribution



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• Read all the previous subtask state from the checkpoint in all sub-tasks 
and filter out the matching keys for each sub-task 

• Sequential read pattern 
• Tasks read unnecessary data and the distributed file system receives high load of read 

requests 

• Track the state location for each key in the checkpoint, so that tasks 
locate and read the matching keys only 

• Avoids reading irrelevant data 
• Requires a materialized index for all keys, i.e. a key-to-read-offset mapping, which can 

potentially grow very large 
• Large amount of random I/O

23

Naive approaches



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Reconfiguring keyed stateful operators requires preserving the 
key semantics: 

• Existing state for a particular key and all future events with this 
key must be routed to the same parallel instance 

• Some kind of hashing is typically used 

• Maintaining routing tables or an index for all key mappings is 
usually impractical 

• Skewed load is challenging to handle with hashing

24



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• Load balance 
• memory: load in terms of maintained state 
• computation: load in terms of computation 
• communication: load in terms of flow size in the input channel of each parallel task 

• Partitioning function performance 
• space required to implement routing 
• lookup cost 

• Migration performance 
• re-assignment computation cost 
• state movement cost

25

State redistribution objectives



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• Evenly distributes keys across parallel tasks 

• Fast to compute, no routing state 

• High migration cost 
• When a new node is added, state is shuffled across existing and new nodes 
• Random I/O and high network communication 

• Not suitable for adaptive applications

26

Uniform hashing



🤧😷🤒 Vasiliki Kalavri | Boston University 202027



🤧😷🤒 Vasiliki Kalavri | Boston University 202027

Can we do better?



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

n1

n3

n2

02128 Nodes and data are 
mapped to a ring using 
the same hash function.

Consistent hashing



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

n1

n3

n2

02128 Nodes and data are 
mapped to a ring using 
the same hash function.

ei: <k, v>
h

Consistent hashing



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

n1

n3

n2

02128 Nodes and data are 
mapped to a ring using 
the same hash function.

ei: <k, v>
h

ek: <k, v>

h

Consistent hashing



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

n1

n3

n2

02128
When a new node 
joins, no data is moved 
across old nodes.

n4

Consistent hashing



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

n1

n3

n2

02128
When a new node 
joins, no data is moved 
across old nodes.

n4

In practice, each node is 
mapped to multiple points 
on the ring using multiple 
hash functions.

Consistent hashing



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

n1

n3

n2

02128
When a new node 
joins, no data is moved 
across old nodes.

n4

In practice, each node is 
mapped to multiple points 
on the ring using multiple 
hash functions.

Why?

Consistent hashing



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• It ensures state is not moved across nodes that are present before and 
after the migration 

• When a new node joins, it becomes responsible for data items from 
multiple of the existing nodes 

• When a node leaves, its data items are distributed over the existing 
nodes 

• On average M/N partitions are moved when the Nth node is inserted or 
removed from a system with M partitions

30

Consistent hashing



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• State is mapped into key-groups 

• Key-groups are mapped to subtasks as ranges 
• On restore, reads are sequential within each key-group, and often across multiple key-groups 
• The metadata of key-group-to-subtask assignments are small. No need to maintain explicit 

lists of key-groups, only range boundaries. 

• The maximum parallelism parameter of an operator defines the number 
of key groups into which the keyed state of the operator is split. 

• The number of key groups limits the maximum number of parallel tasks to which keyed state 
can be scaled. 

• Trade-off between flexibility in rescaling and the maximum overhead involved in indexing and 
restoring the state

31

Apache Flink Key-groups



🤧😷🤒 Vasiliki Kalavri | Boston University 202032



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

val env = StreamExecutionEnvironment.getExecutionEnvironment

// set the maximum parallelism for this application
env.setMaxParallelism(512)

val alerts: DataStream[(String, Double, Double)] =
keyedSensorData
.flatMap(new TemperatureAlertFunction(1.1))
// set the maximum parallelism for this operator
.setMaxParallelism(1024)

33

Setting the max parallelism



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• A Deep Dive into Rescalable State in Apache Flink: https://
flink.apache.org/features/2017/07/04/flink-rescalable-state.html 

• Buğra Gedik. Partitioning functions for stateful data parallelism in 
stream processing. (VLDB Journal 23, 4, 2014). 

34

Lecture references

https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html
https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html

