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Streaming applications are long-running 
• Workload will change 
• Conditions might change 
• State is accumulated over time
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Control: When and how much to adapt?

Mechanism: How to apply the re-configuration?
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• Detect environment changes: external workload and system 
performance 

• Identify bottleneck operators, straggler workers, skew 
• Enumerate scaling actions, predict their effects, and decide which and 

when to apply

• Allocate new resources, spawn new processes or release unused 
resources, safely terminate processes 

• Adjust dataflow channels and network connections 
• Re-partition and migrate state in a consistent manner 
• Block and unblock computations to ensure result correctness
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Automatic Scaling 
Control

4
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The automatic scaling problem
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Given a logical dataflow with sources S1, S2, … Sn and rates λ1, λ2, 
… λn identify the minimum parallelism πi per operator i, such 

that the physical dataflow can sustain all source rates.
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Automatic scaling overview
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Automatic scaling requirements
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▸ Accuracy 
▸ no over/under-provisioning 

▸ Stability 
▸ no oscillations 

▸ Performance 
▸ fast convergence

scaling 
controller

detect 
symptoms

decide whether 
to scale

decide how 
much to scale

metrics

policy

scaling action
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Scaling approaches
Metrics

• service time and waiting time per tuple and per task 
• total time spent processing a tuple and all its derived results 
• CPU utilization, congestion, back pressure, throughput 

Policy
• Queuing theory models: for latency objectives 
• Control theory models: e.g., PID controller 
• Rule-based models, e.g. if CPU utilization > 70% => scale out 
• Analytical dataflow-based models 

Action
• Speculative: small changes at one operator at a time 
• Predictive: at-once for all operators

8
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Queuing theory models

9

• Metrics
• service time and waiting time per 

tuple and per task
• total time spent processing a tuple 

and all its derived results
• Policy

• each operator as a single-server 
queuing system

• generalized Jackson networks
• Action

• predictive, at-once for all operators
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Queuing theory models
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• Metrics
• service time and waiting time per 

tuple and per task
• total time spent processing a tuple 

and all its derived results
• Policy

• each operator as a single-server 
queuing system

• generalized Jackson networks
• Action

• predictive, at-once for all operators

Too fine-grained, impractical 
for high-rate streams

Sampling degrades 
accuracy
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Queuing theory models

9

• Metrics
• service time and waiting time per 

tuple and per task
• total time spent processing a tuple 

and all its derived results
• Policy

• each operator as a single-server 
queuing system

• generalized Jackson networks
• Action

• predictive, at-once for all operators

Too fine-grained, impractical 
for high-rate streams

Sampling degrades 
accuracy

Simplified models make 
strong assumptions

Unsuitable for complex 
operators, e.g. sliding 

windows, joins
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Control theory models

10

• Metrics
• input and output signals
• delay of tuples that have just 

entered the system
• Policy

• dataflow as a black-box
• SISO models - MIMO too complex

• Action
• predictive, dataflow-wide
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the delay time
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Control theory models

10

• Metrics
• input and output signals
• delay of tuples that have just 

entered the system
• Policy

• dataflow as a black-box
• SISO models - MIMO too complex

• Action
• predictive, dataflow-wide

The output signal is 
the delay time

Performance depends on 
parameter selection, e.g. 
poles placement, sampling 

period, damping 

Cannot identify individual 
bottlenecks neither 

model 2-input operators
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Heuristic models

11

• Metrics
• externally observed coarse-grained 

and aggregates
• CPU utilization, throughput, back-

pressure signal
• Policy

• rule-based
• If CPU utilization > 70% and back-

pressure then scale up
• Action

• speculative, one operator at-a-time
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Heuristic models
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and aggregates
• CPU utilization, throughput, back-

pressure signal
• Policy

• rule-based
• If CPU utilization > 70% and back-

pressure then scale up
• Action

• speculative, one operator at-a-time

Noisy, sensitive to 
interference, misleading

Easy-to-obtain
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Heuristic models

11

• Metrics
• externally observed coarse-grained 

and aggregates
• CPU utilization, throughput, back-

pressure signal
• Policy

• rule-based
• If CPU utilization > 70% and back-

pressure then scale up
• Action

• speculative, one operator at-a-time

Noisy, sensitive to 
interference, misleading

Easy-to-obtain

Sensitive to thresholds and 
require manual tuning

Oscillations, slow 
convergence, black-listing
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effect of Dhalion’s scaling actions 
in an initially under-provisioned wordcount dataflow

1
2

3 654
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Dataflow worker activities
worker 1

worker 2

worker 3

receive 
message

deserialization

processing

serialization
send 

message

waiting

waiting

13
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o1src o2

back-pressure
target: 40 rec/s

10 rec/s 100 rec/s

Which operator is the bottleneck?

What if we scale ο1 x 4?

How much to scale ο2?
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o1src o2

back-pressure
target: 40 rec/s

10 rec/s 100 rec/s

Which operator is the bottleneck?

What if we scale ο1 x 4?

How much to scale ο2?

o1 cannot keep up

waiting for output

waiting for input

src

o1
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o1src o2

back-pressure
target: 40 rec/s

10 rec/s 100 rec/s

Which operator is the bottleneck?

What if we scale ο1 x 4?

How much to scale ο2?

o1 cannot keep up

waiting for output

waiting for input

src

o1

o2

o2 cannot keep up

src
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src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Intuition: use the dataflow graph to extract operator 
dependencies and system instrumentation to 

collect accurate, representative metrics.

target: 40 rec/s

0.5s

15
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src

o1
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10 recs 10 recs

1 2 3 4
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x4 instances 
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src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Intuition: use the dataflow graph to extract operator 
dependencies and system instrumentation to 

collect accurate, representative metrics.

True rate = 200 recs/s
x4 instances 
to keep up 

with src rate

target: 40 rec/s

0.5s

15
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src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Intuition: use the dataflow graph to extract operator 
dependencies and system instrumentation to 

collect accurate, representative metrics.

True rate = 200 recs/s
x4 instances 
to keep up 

with src rate

x2 instances 
to keep up 
with x4 o1 
instances

target: 40 rec/s

0.5s

15
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src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Observation Window W

0.5s
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src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Observation Window W

0.5s

Instrumentation Metrics

Records 
processed Rpcd

20 200

Records  
pushed Rpsd

200 -

Useful time Wu 2s 1s

o2o1



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The DS2 model

17
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The DS2 model

• Collect metrics per configurable observation window W
• activity durations per worker 
• records processed Rprc and records pushed to output Rpsd

17
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The DS2 model

• Collect metrics per configurable observation window W
• activity durations per worker 
• records processed Rprc and records pushed to output Rpsd

• Capture dependencies through the dataflow graph
• assign an increasing sequential id to all operators in topological order, starting from the 

sources
• represent as an adjacency matrix A 

• Aij = 1 iff operator i is upstream neighbor of j

17
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The time spent by an operator instance in deserialization, processing, 
and serialization activities. 

• excludes any time spent waiting on input or on output 

• amounts to the time an operator instance runs for if executed in an 
ideal setting 

• when there is no waiting the useful time is equal to the observed time

18

Useful time Wu
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True processing / output rates

Aggregated true processing / output rates

19
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Optimal parallelism per operator
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Optimal parallelism per operator

captures 
upstream operators

Aggregated true 
output rate of 

operator oj , when oj 
itself and all 

upstream ops 
are deployed with 
optimal parallelism
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Optimal parallelism per operator

captures 
upstream operators

Aggregated true 
output rate of 

operator oj , when oj 
itself and all 

upstream ops 
are deployed with 
optimal parallelism

current parallelism 
of operator i
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–Johnny Appleseed

“Type a quote here.” 

21

Recursively computed as:
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–Johnny Appleseed

“Type a quote here.” 

21

Recursively computed as:
True output rate 

of source j
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–Johnny Appleseed

“Type a quote here.” 

21

Recursively computed as:

It can be computed for all 
operators by traversing the 

dataflow from left to right once

True output rate 
of source j
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Example

22

i=1
i=2

i=3

i=4

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s
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Example

22

i=1
i=2

i=3

i=4

o1[λp] = 0 
o1[λo] = 2000 r/s

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

o2[λp] = 1000 r/s 
o2[λo] = 3800 r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

o3[λp] = 2930 r/s 
o3[λo] = 600 r/s
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Example

22

i=1
i=2

i=3

i=4

o1[λp] = 0 
o1[λo] = 2000 r/s

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

o2[λp] = 1000 r/s 
o2[λo] = 3800 r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

o3[λp] = 2930 r/s 
o3[λo] = 600 r/s

π2 = o1[λ*o ] *
p2

o2[λp]
= 2000 *

2
1000

= 4
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Example

22

i=1
i=2

i=3

i=4

o1[λp] = 0 
o1[λo] = 2000 r/s

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

o2[λp] = 1000 r/s 
o2[λo] = 3800 r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

o3[λp] = 2930 r/s 
o3[λo] = 600 r/s

π2 = o1[λ*o ] *
p2

o2[λp]
= 2000 *

2
1000

= 4

π3 = o2[λ*o ] *
p3

o3[λp]
= 7600 *

3
2930

≈ 7.78 → 8
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DS2 model properties

If operator scaling is linear, then: 

• no overshoot when scaling up 
• no undershoot when scaling down

23
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DS2 model properties

If operator scaling is linear, then: 

• no overshoot when scaling up 
• no undershoot when scaling down
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DS2 model properties

If operator scaling is linear, then: 

• no overshoot when scaling up 
• no undershoot when scaling down

23

parallelism

initial rate

target

predict
ion

p0 p1

parallelism

initial rate
target

p0p1

Ideal rates act as un upper bound 
when scaling up and as a lower bound 
when scaling down: 

DS2 will converge monotonically to 
the target rate

prediction

p’

p’
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DS2 model properties

If operator scaling is linear, then: 

• no overshoot when scaling up 
• no undershoot when scaling down

23

parallelism

initial rate

target

predict
ion

p0 p1

parallelism

initial rate
target

p0p1

Ideal rates act as un upper bound 
when scaling up and as a lower bound 
when scaling down: 

DS2 will converge monotonically to 
the target rate

prediction

actual

actual
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parallelism

initial rate

target
actual

error

p0 p1

predict
ion

x
x
x

DS2 model properties

24
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parallelism

initial rate

target
actual

p0 p1

x

new predictio
n

DS2 model properties
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parallelism

initial rate

target
actual

p0 p1

x error

p1’

new predictio
n

Gradually minimizes error

DS2 model properties

24
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Scaling Manager Scaling Policy

Metrics 
Repository

invoke

re-scale job

report metrics

monitor

pull metrics

decision

Timely dataflow
Apache Flink

Instrumented 
stream processor
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Initially under-provisioned wordcount dataflow
Target rate:  16.700 rec/s
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Initially under-provisioned wordcount dataflow
Target rate:  16.700 rec/s

DS2 converges in a 
single step for 
both operators
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Initially under-provisioned wordcount dataflow
Target rate:  16.700 rec/s

DS2 converges in a 
single step for 
both operators

and converges in 
60s, as soon as it 
receives the 
Heron metrics
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Initially under-provisioned wordcount dataflow
Target rate:  16.700 rec/s

DS2 converges in a 
single step for 
both operators

Dhalion scales 
one operator at a 
time, and needs 
six steps in total

1

6
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2and converges in 

60s, as soon as it 
receives the 
Heron metrics
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Initially under-provisioned wordcount dataflow
Target rate:  16.700 rec/s

DS2 converges in a 
single step for 
both operators

and converges in 2000s

Dhalion scales 
one operator at a 
time, and needs 
six steps in total

1

6

5

43
2and converges in 

60s, as soon as it 
receives the 
Heron metrics
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Initially under-provisioned wordcount dataflow

+10 counts

+12 mappers

Target rate:  16.700 rec/s

DS2 converges in a 
single step for 
both operators

and converges in 2000s

Dhalion scales 
one operator at a 
time, and needs 
six steps in total

1

6

5

43
2and converges in 

60s, as soon as it 
receives the 
Heron metrics
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DS2 on Flink
Initially under-provisioned wordcount 

Target rate: 2.000.000 rec/s, drops to half at 800s
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DS2 on Flink
Initially under-provisioned wordcount 

Target rate: 2.000.000 rec/s, drops to half at 800s

DS2 converges in  
2 steps for both 
operators

1

2
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DS2 on Flink
Initially under-provisioned wordcount 

Target rate: 2.000.000 rec/s, drops to half at 800s

DS2 reacts within 
3s when the target 

rate drops

DS2 converges in  
2 steps for both 
operators

1

2
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DS2 on Flink
Initially under-provisioned wordcount 

Target rate: 2.000.000 rec/s, drops to half at 800s

DS2 reacts within 
3s when the target 

rate drops

DS2 converges in  
2 steps for both 
operators

1

2

Transient 
underpovisioning 

by 1 instance
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DS2 scaling actions on Apache Flink wordcount
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DS2 scaling actions on Apache Flink wordcount

Every reconfiguration 
takes ~30s during which 
the system is unavailable
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DS2 scaling actions on Apache Flink wordcount

Every reconfiguration 
takes ~30s during which 
the system is unavailable

Re-configuration requires state migration with correctness guarantees.
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State migration

29
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State migration strategies
• Stop-and-restart 

• halt the whole computation, take a state snapshot of all operators, restart 
• unnecessary stalls if only one or few operators need to be rescaled 

• Partial pause and restart 
• only temporarily block the affected dataflow subgraph 
• usually the operator to be scaled and upstream channels 

• All-at-once 
• move state to be migrated in one operation 
• high latency during migration if the state is large 

• Progressive 
• move state to be migrated in smaller pieces, e.g. key-by-key 
• can be used to interleave state transfer with processing 
• migration duration might increase

30
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Pause-and-restart state migration

• State is scoped to a 
single task 

• Each stateful task is 
responsible for 
processing and state 
management

31
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Pause-and-restart state migration

• State is scoped to a 
single task 

• Each stateful task is 
responsible for 
processing and state 
management

31

block channels 
and upstream operators
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Pause-and-restart state migration

• State is scoped to a 
single task 

• Each stateful task is 
responsible for 
processing and state 
management

31

snapshot

snapshot

block channels 
and upstream operators

buffer  
incoming records
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Pause-and-restart state migration

32

buffer  
incoming records

block channels 
and upstream operators • State is scoped to a 

single task 
• Each stateful task is 

responsible for 
processing and state 
management
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Pause-and-restart state migration

32

re-configure
buffer  

incoming records

block channels 
and upstream operators • State is scoped to a 

single task 
• Each stateful task is 

responsible for 
processing and state 
management
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Pause-and-restart state migration

32

re-configure

state load

state load

buffer  
incoming records

block channels 
and upstream operators • State is scoped to a 

single task 
• Each stateful task is 

responsible for 
processing and state 
management
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Pause-and-restart state migration

32

re-configure

state load

state load

buffer  
incoming records

block channels 
and upstream operators

All affected operators block until the reconfiguration is complete

• State is scoped to a 
single task 

• Each stateful task is 
responsible for 
processing and state 
management
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Pause-and-restart state migration

33

unblock upstream
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Live state migration

34

Intuition: treat state migration as a dataflow operation and 
interleave fine-grained state transfers with processing.
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control command

Live state migration
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control command

Helper operators, 
hidden from the 

application developer

Live state migration
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get state

control command

Helper operators, 
hidden from the 

application developer

Live state migration
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transfer state

control command

Helper operators, 
hidden from the 

application developer

Live state migration
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control command

Helper operators, 
hidden from the 

application developer

Live state migration
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control command

Helper operators, 
hidden from the 

application developer

Helper operators have 
access to the 

downstream state

Live state migration
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control command

Live state migration
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control command

Live state migration
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get state

control command

Live state migration
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transfer state

control command

Live state migration
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control command

Live state migration
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control command

Helper operators can check 
the frontier (watermark) at 

the output of the stateful 
operator to ensure only 

complete state is migrated

Live state migration
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control command

Helper operators can check 
the frontier (watermark) at 

the output of the stateful 
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mechanism in Flink?
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