
🤧😷🤒 Vasiliki Kalavri | Boston University 2020

CS 591 K1:
Data Stream Processing and Analytics

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

Spring 2020

4/02: Elasticity policies and state migration

mailto:vkalavri@bu.edu

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Streaming applications are long-running
• Workload will change
• Conditions might change
• State is accumulated over time

2

ev
en

ts
/s

time

rate decrease

ev
en

ts
/s

time

throughput
degradation

ev
en

ts
/s

time

rate increase

: input rate : throughput

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Control: When and how much to adapt?

Mechanism: How to apply the re-configuration?

3

• Detect environment changes: external workload and system
performance

• Identify bottleneck operators, straggler workers, skew
• Enumerate scaling actions, predict their effects, and decide which and

when to apply

• Allocate new resources, spawn new processes or release unused
resources, safely terminate processes

• Adjust dataflow channels and network connections
• Re-partition and migrate state in a consistent manner
• Block and unblock computations to ensure result correctness

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Automatic Scaling
Control

4

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The automatic scaling problem

5

Given a logical dataflow with sources S1, S2, … Sn and rates λ1, λ2,
… λn identify the minimum parallelism πi per operator i, such

that the physical dataflow can sustain all source rates.

S1

S2

λ1

λ2

S1

S2

π=2

π=3

logical dataflow physical dataflow

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Automatic scaling overview

6

scaling
controller

detect
symptoms

decide whether
to scale

decide how
much to scale

metrics

policy

scaling action

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Automatic scaling requirements

7

▸ Accuracy
▸ no over/under-provisioning

▸ Stability
▸ no oscillations

▸ Performance
▸ fast convergence

scaling
controller

detect
symptoms

decide whether
to scale

decide how
much to scale

metrics

policy

scaling action

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Scaling approaches
Metrics

• service time and waiting time per tuple and per task
• total time spent processing a tuple and all its derived results
• CPU utilization, congestion, back pressure, throughput

Policy
• Queuing theory models: for latency objectives
• Control theory models: e.g., PID controller
• Rule-based models, e.g. if CPU utilization > 70% => scale out
• Analytical dataflow-based models

Action
• Speculative: small changes at one operator at a time
• Predictive: at-once for all operators

8

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Queuing theory models

9

• Metrics
• service time and waiting time per

tuple and per task
• total time spent processing a tuple

and all its derived results
• Policy

• each operator as a single-server
queuing system

• generalized Jackson networks
• Action

• predictive, at-once for all operators

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Queuing theory models

9

• Metrics
• service time and waiting time per

tuple and per task
• total time spent processing a tuple

and all its derived results
• Policy

• each operator as a single-server
queuing system

• generalized Jackson networks
• Action

• predictive, at-once for all operators

Too fine-grained, impractical
for high-rate streams

Sampling degrades
accuracy

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Queuing theory models

9

• Metrics
• service time and waiting time per

tuple and per task
• total time spent processing a tuple

and all its derived results
• Policy

• each operator as a single-server
queuing system

• generalized Jackson networks
• Action

• predictive, at-once for all operators

Too fine-grained, impractical
for high-rate streams

Sampling degrades
accuracy

Simplified models make
strong assumptions

Unsuitable for complex
operators, e.g. sliding

windows, joins

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Control theory models

10

• Metrics
• input and output signals
• delay of tuples that have just

entered the system
• Policy

• dataflow as a black-box
• SISO models - MIMO too complex

• Action
• predictive, dataflow-wide

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Control theory models

10

• Metrics
• input and output signals
• delay of tuples that have just

entered the system
• Policy

• dataflow as a black-box
• SISO models - MIMO too complex

• Action
• predictive, dataflow-wide

The output signal is
the delay time

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Control theory models

10

• Metrics
• input and output signals
• delay of tuples that have just

entered the system
• Policy

• dataflow as a black-box
• SISO models - MIMO too complex

• Action
• predictive, dataflow-wide

The output signal is
the delay time

Performance depends on
parameter selection, e.g.
poles placement, sampling

period, damping

Cannot identify individual
bottlenecks neither

model 2-input operators

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Heuristic models

11

• Metrics
• externally observed coarse-grained

and aggregates
• CPU utilization, throughput, back-

pressure signal
• Policy

• rule-based
• If CPU utilization > 70% and back-

pressure then scale up
• Action

• speculative, one operator at-a-time

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Heuristic models

11

• Metrics
• externally observed coarse-grained

and aggregates
• CPU utilization, throughput, back-

pressure signal
• Policy

• rule-based
• If CPU utilization > 70% and back-

pressure then scale up
• Action

• speculative, one operator at-a-time

Noisy, sensitive to
interference, misleading

Easy-to-obtain

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Heuristic models

11

• Metrics
• externally observed coarse-grained

and aggregates
• CPU utilization, throughput, back-

pressure signal
• Policy

• rule-based
• If CPU utilization > 70% and back-

pressure then scale up
• Action

• speculative, one operator at-a-time

Noisy, sensitive to
interference, misleading

Easy-to-obtain

Sensitive to thresholds and
require manual tuning

Oscillations, slow
convergence, black-listing

🤧😷🤒 Vasiliki Kalavri | Boston University 202012

🤧😷🤒 Vasiliki Kalavri | Boston University 202012

effect of Dhalion’s scaling actions
in an initially under-provisioned wordcount dataflow

1
2

3 654

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Dataflow worker activities
worker 1

worker 2

worker 3

receive
message

deserialization

processing

serialization
send

message

waiting

waiting

13

🤧😷🤒 Vasiliki Kalavri | Boston University 202014

o1src o2

back-pressure
target: 40 rec/s

10 rec/s 100 rec/s

Which operator is the bottleneck?

What if we scale ο1 x 4?

How much to scale ο2?

🤧😷🤒 Vasiliki Kalavri | Boston University 202014

o1src o2

back-pressure
target: 40 rec/s

10 rec/s 100 rec/s

Which operator is the bottleneck?

What if we scale ο1 x 4?

How much to scale ο2?

o1 cannot keep up

waiting for output

waiting for input

src

o1

o2

🤧😷🤒 Vasiliki Kalavri | Boston University 202014

o1src o2

back-pressure
target: 40 rec/s

10 rec/s 100 rec/s

Which operator is the bottleneck?

What if we scale ο1 x 4?

How much to scale ο2?

o1 cannot keep up

waiting for output

waiting for input

src

o1

o2

o2 cannot keep up

src

o1

o2

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Intuition: use the dataflow graph to extract operator
dependencies and system instrumentation to

collect accurate, representative metrics.

target: 40 rec/s

0.5s

15

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Intuition: use the dataflow graph to extract operator
dependencies and system instrumentation to

collect accurate, representative metrics.

x4 instances
to keep up

with src rate

target: 40 rec/s

0.5s

15

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Intuition: use the dataflow graph to extract operator
dependencies and system instrumentation to

collect accurate, representative metrics.

True rate = 200 recs/s
x4 instances
to keep up

with src rate

target: 40 rec/s

0.5s

15

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Intuition: use the dataflow graph to extract operator
dependencies and system instrumentation to

collect accurate, representative metrics.

True rate = 200 recs/s
x4 instances
to keep up

with src rate

x2 instances
to keep up
with x4 o1
instances

target: 40 rec/s

0.5s

15

🤧😷🤒 Vasiliki Kalavri | Boston University 202016

src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Observation Window W

0.5s

🤧😷🤒 Vasiliki Kalavri | Boston University 202016

src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Observation Window W

0.5s

Instrumentation Metrics

Records
processed Rpcd

20 200

Records
pushed Rpsd

200 -

Useful time Wu 2s 1s

o2o1

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The DS2 model

17

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The DS2 model

• Collect metrics per configurable observation window W
• activity durations per worker
• records processed Rprc and records pushed to output Rpsd

17

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The DS2 model

• Collect metrics per configurable observation window W
• activity durations per worker
• records processed Rprc and records pushed to output Rpsd

• Capture dependencies through the dataflow graph
• assign an increasing sequential id to all operators in topological order, starting from the

sources
• represent as an adjacency matrix A

• Aij = 1 iff operator i is upstream neighbor of j

17

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The time spent by an operator instance in deserialization, processing,
and serialization activities.

• excludes any time spent waiting on input or on output

• amounts to the time an operator instance runs for if executed in an
ideal setting

• when there is no waiting the useful time is equal to the observed time

18

Useful time Wu

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

True processing / output rates

Aggregated true processing / output rates

19

🤧😷🤒 Vasiliki Kalavri | Boston University 202020

Optimal parallelism per operator

🤧😷🤒 Vasiliki Kalavri | Boston University 202020

Optimal parallelism per operator

captures
upstream operators

🤧😷🤒 Vasiliki Kalavri | Boston University 202020

Optimal parallelism per operator

captures
upstream operators

Aggregated true
output rate of

operator oj , when oj
itself and all

upstream ops
are deployed with
optimal parallelism

🤧😷🤒 Vasiliki Kalavri | Boston University 202020

Optimal parallelism per operator

captures
upstream operators

Aggregated true
output rate of

operator oj , when oj
itself and all

upstream ops
are deployed with
optimal parallelism

current parallelism
of operator i

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

–Johnny Appleseed

“Type a quote here.”

21

Recursively computed as:

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

–Johnny Appleseed

“Type a quote here.”

21

Recursively computed as:
True output rate

of source j

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

–Johnny Appleseed

“Type a quote here.”

21

Recursively computed as:

It can be computed for all
operators by traversing the

dataflow from left to right once

True output rate
of source j

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Example

22

i=1
i=2

i=3

i=4

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Example

22

i=1
i=2

i=3

i=4

o1[λp] = 0
o1[λo] = 2000 r/s

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

o2[λp] = 1000 r/s
o2[λo] = 3800 r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

o3[λp] = 2930 r/s
o3[λo] = 600 r/s

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Example

22

i=1
i=2

i=3

i=4

o1[λp] = 0
o1[λo] = 2000 r/s

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

o2[λp] = 1000 r/s
o2[λo] = 3800 r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

o3[λp] = 2930 r/s
o3[λo] = 600 r/s

π2 = o1[λ*o] *
p2

o2[λp]
= 2000 *

2
1000

= 4

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Example

22

i=1
i=2

i=3

i=4

o1[λp] = 0
o1[λo] = 2000 r/s

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

o2[λp] = 1000 r/s
o2[λo] = 3800 r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

o3[λp] = 2930 r/s
o3[λo] = 600 r/s

π2 = o1[λ*o] *
p2

o2[λp]
= 2000 *

2
1000

= 4

π3 = o2[λ*o] *
p3

o3[λp]
= 7600 *

3
2930

≈ 7.78 → 8

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

DS2 model properties

If operator scaling is linear, then:

• no overshoot when scaling up
• no undershoot when scaling down

23

parallelism

initial rate

target

predict
ion

p0 p1

parallelism

initial rate
target

p0p1

prediction

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

DS2 model properties

If operator scaling is linear, then:

• no overshoot when scaling up
• no undershoot when scaling down

23

parallelism

initial rate

target

predict
ion

p0 p1

parallelism

initial rate
target

p0p1

prediction

x

x

p’

p’

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

DS2 model properties

If operator scaling is linear, then:

• no overshoot when scaling up
• no undershoot when scaling down

23

parallelism

initial rate

target

predict
ion

p0 p1

parallelism

initial rate
target

p0p1

Ideal rates act as un upper bound
when scaling up and as a lower bound
when scaling down:

DS2 will converge monotonically to
the target rate

prediction

p’

p’

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

DS2 model properties

If operator scaling is linear, then:

• no overshoot when scaling up
• no undershoot when scaling down

23

parallelism

initial rate

target

predict
ion

p0 p1

parallelism

initial rate
target

p0p1

Ideal rates act as un upper bound
when scaling up and as a lower bound
when scaling down:

DS2 will converge monotonically to
the target rate

prediction

actual

actual

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

parallelism

initial rate

target
actual

error

p0 p1

predict
ion

x
x
x

DS2 model properties

24

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

parallelism

initial rate

target
actual

p0 p1

x

new predictio
n

DS2 model properties

24

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

parallelism

initial rate

target
actual

p0 p1

x error

p1’

new predictio
n

Gradually minimizes error

DS2 model properties

24

🤧😷🤒 Vasiliki Kalavri | Boston University 202025

Scaling Manager Scaling Policy

Metrics
Repository

invoke

re-scale job

report metrics

monitor

pull metrics

decision

Timely dataflow
Apache Flink

Instrumented
stream processor

🤧😷🤒 Vasiliki Kalavri | Boston University 202026

Initially under-provisioned wordcount dataflow
Target rate: 16.700 rec/s

🤧😷🤒 Vasiliki Kalavri | Boston University 202026

Initially under-provisioned wordcount dataflow
Target rate: 16.700 rec/s

DS2 converges in a
single step for
both operators

🤧😷🤒 Vasiliki Kalavri | Boston University 202026

Initially under-provisioned wordcount dataflow
Target rate: 16.700 rec/s

DS2 converges in a
single step for
both operators

and converges in
60s, as soon as it
receives the
Heron metrics

🤧😷🤒 Vasiliki Kalavri | Boston University 202026

Initially under-provisioned wordcount dataflow
Target rate: 16.700 rec/s

DS2 converges in a
single step for
both operators

Dhalion scales
one operator at a
time, and needs
six steps in total

1

6

5

43
2and converges in

60s, as soon as it
receives the
Heron metrics

🤧😷🤒 Vasiliki Kalavri | Boston University 202026

Initially under-provisioned wordcount dataflow
Target rate: 16.700 rec/s

DS2 converges in a
single step for
both operators

and converges in 2000s

Dhalion scales
one operator at a
time, and needs
six steps in total

1

6

5

43
2and converges in

60s, as soon as it
receives the
Heron metrics

🤧😷🤒 Vasiliki Kalavri | Boston University 202026

Initially under-provisioned wordcount dataflow

+10 counts

+12 mappers

Target rate: 16.700 rec/s

DS2 converges in a
single step for
both operators

and converges in 2000s

Dhalion scales
one operator at a
time, and needs
six steps in total

1

6

5

43
2and converges in

60s, as soon as it
receives the
Heron metrics

🤧😷🤒 Vasiliki Kalavri | Boston University 202027

DS2 on Flink
Initially under-provisioned wordcount

Target rate: 2.000.000 rec/s, drops to half at 800s

🤧😷🤒 Vasiliki Kalavri | Boston University 202027

DS2 on Flink
Initially under-provisioned wordcount

Target rate: 2.000.000 rec/s, drops to half at 800s

DS2 converges in
2 steps for both
operators

1

2

🤧😷🤒 Vasiliki Kalavri | Boston University 202027

DS2 on Flink
Initially under-provisioned wordcount

Target rate: 2.000.000 rec/s, drops to half at 800s

DS2 reacts within
3s when the target

rate drops

DS2 converges in
2 steps for both
operators

1

2

🤧😷🤒 Vasiliki Kalavri | Boston University 202027

DS2 on Flink
Initially under-provisioned wordcount

Target rate: 2.000.000 rec/s, drops to half at 800s

DS2 reacts within
3s when the target

rate drops

DS2 converges in
2 steps for both
operators

1

2

Transient
underpovisioning

by 1 instance

28

DS2 scaling actions on Apache Flink wordcount

28

DS2 scaling actions on Apache Flink wordcount

Every reconfiguration
takes ~30s during which
the system is unavailable

28

DS2 scaling actions on Apache Flink wordcount

Every reconfiguration
takes ~30s during which
the system is unavailable

Re-configuration requires state migration with correctness guarantees.

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

State migration

29

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

State migration strategies
• Stop-and-restart

• halt the whole computation, take a state snapshot of all operators, restart
• unnecessary stalls if only one or few operators need to be rescaled

• Partial pause and restart
• only temporarily block the affected dataflow subgraph
• usually the operator to be scaled and upstream channels

• All-at-once
• move state to be migrated in one operation
• high latency during migration if the state is large

• Progressive
• move state to be migrated in smaller pieces, e.g. key-by-key
• can be used to interleave state transfer with processing
• migration duration might increase

30

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Pause-and-restart state migration

• State is scoped to a
single task

• Each stateful task is
responsible for
processing and state
management

31

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Pause-and-restart state migration

• State is scoped to a
single task

• Each stateful task is
responsible for
processing and state
management

31

block channels
and upstream operators

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Pause-and-restart state migration

• State is scoped to a
single task

• Each stateful task is
responsible for
processing and state
management

31

snapshot

snapshot

block channels
and upstream operators

buffer
incoming records

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Pause-and-restart state migration

32

buffer
incoming records

block channels
and upstream operators • State is scoped to a

single task
• Each stateful task is

responsible for
processing and state
management

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Pause-and-restart state migration

32

re-configure
buffer

incoming records

block channels
and upstream operators • State is scoped to a

single task
• Each stateful task is

responsible for
processing and state
management

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Pause-and-restart state migration

32

re-configure

state load

state load

buffer
incoming records

block channels
and upstream operators • State is scoped to a

single task
• Each stateful task is

responsible for
processing and state
management

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Pause-and-restart state migration

32

re-configure

state load

state load

buffer
incoming records

block channels
and upstream operators

All affected operators block until the reconfiguration is complete

• State is scoped to a
single task

• Each stateful task is
responsible for
processing and state
management

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Pause-and-restart state migration

33

unblock upstream

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Live state migration

34

Intuition: treat state migration as a dataflow operation and
interleave fine-grained state transfers with processing.

🤧😷🤒 Vasiliki Kalavri | Boston University 202035

control command

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202035

control command

Helper operators,
hidden from the

application developer

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202035

control command

Helper operators,
hidden from the

application developer

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202035

get state

control command

Helper operators,
hidden from the

application developer

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202035

transfer state

control command

Helper operators,
hidden from the

application developer

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202035

control command

Helper operators,
hidden from the

application developer

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202035

control command

Helper operators,
hidden from the

application developer

Helper operators have
access to the

downstream state

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202036

control command

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202036

control command

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202036

get state

control command

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202036

transfer state

control command

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202036

control command

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202036

control command

Helper operators can check
the frontier (watermark) at

the output of the stateful
operator to ensure only

complete state is migrated

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202036

control command

Helper operators can check
the frontier (watermark) at

the output of the stateful
operator to ensure only

complete state is migrated

Helpers buffer data that
cannot yet be safely routed

and configuration commands
that cannot yet be applied

Live state migration

🤧😷🤒 Vasiliki Kalavri | Boston University 202036

control command

Helper operators can check
the frontier (watermark) at

the output of the stateful
operator to ensure only

complete state is migrated

Helpers buffer data that
cannot yet be safely routed

and configuration commands
that cannot yet be applied

Live state migration

Can we apply this
mechanism in Flink?

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Lecture references

• Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dimitrova,
Matthew Forshaw, and Timothy Roscoe. Three steps is all you need:
fast, accurate, automatic scaling decisions for distributed streaming
dataflows. (OSDI’18).

• Moritz Hoffmann, Andrea Lattuada, Frank McSherry, Vasiliki Kalavri, John
Liagouris, Timothy Roscoe. Megaphone: Latency-conscious state
migration for distributed streaming dataflows. (VLDB 2019).

37

https://arxiv.org/search/cs?searchtype=author&query=Hoffmann%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Lattuada%2C+A
https://arxiv.org/search/cs?searchtype=author&query=McSherry%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Kalavri%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Liagouris%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Liagouris%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Roscoe%2C+T

