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Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers 
can process events.
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Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers 
can process events.

• What happens if consumers cannot keep up with the event rate?
• drop messages
• buffer messages in a queue: what if the queue grows larger than available memory?
• block the producer (back-pressure, flow control)
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Load management approaches
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!Load 
shedder

(a) Load shedding (b) Back-pressure (c) Elasticity

Selectively drop records: 

• Temporarily trades-off result 
accuracy for sustainable 
performance. 

• Suitable for applications with strict 
latency constraints that can tolerate 
approximate results.

Slow down the flow of data: 

• The system buffers excess data for 
later processing, once input rates 
stabilize.  

• Requires a persistent input source. 
• Suitable for transient load increase.

Scale resource allocation: 

• Addresses the case of increased 
load and additionally ensures no 
resources are left idle when the 
input load decreases.
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Load shedding

• Load shedding is the process of discarding data when input rates 
increase beyond system capacity. 

• Load shedding techniques operate in a dynamic fashion: the system 
detects an overload situation during runtime and selectively drops tuples 
according to a QoS specification. 

• Similar to congestion control or video streaming in a lower quality.
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https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png 
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Load shedding as an optimization problem

N: query network 
I: set of input streams with known arrival rates 
C: system processing capacity 
H: headroom factor, i.e. a conservative estimate of the percentage of resources required by the system at steady state 
Load(N(I)): the load as a fraction of the total capacity C that network N(I) presents 
Uacc: the aggregate utility 

6

Find a new network N' such that  

Load(N’(I))< H x C and 

Uacc(N(I)) - Uacc(N'I)) is minimized



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Implementation

• Load shedding is commonly implemented by a standalone component 
integrated with the stream processor 

• The load shedder continuously monitors input rates or other system 
metrics and can access information about the running query plan  

• It detects overload and decides what actions to take in order to maintain acceptable 
latency and minimize result quality degradation.
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DSMS with load shedder
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Load shedding decisions
• When to shed load? 

• detect overload quickly to avoid latency increase 
• monitor input rates 

• Where in the query plan? 
• dropping at the sources vs. dropping at bottleneck operators 

• How much load to shed? 
• enough for the system to keep-up 

• Which tuples to drop? 
• improve latency to an acceptable level  
• cause only minimal results quality degradation
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Detecting overload
• When to shed load? An incorrectly triggered shedding action can cause 

unnecessary result degradation! 

• Load shedding components rely on statistics gathered during execution: 
• A statistics manager module monitors processing and input rates and periodically 

estimates operator selectivities.  
• The load shedder assigns a cost, ci, in cycles per tuple, and a selectivity, si, to each 

operator i.  
• The statistics manager collects metrics and estimates those parameters either 

continuously or by running the system for a designated period of time, prior to regular 
query execution.
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Estimating cost and selectivity
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• Selectivity: how many records does the operator produce per record in its 
input? 

• map: 1 in 1 out 
• filter: 1 in, 1 or 0 out 
• flatMap, join: 1 in 0, 1, or more out 

• Cost: how many records can an operator process in a unit of time?

#records_in #records_out
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Overload detection (II)

12

Load coefficient for input I: Total load over m inputs:
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Overload detection (II)
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Overload detection (II)
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Load coefficient for input I: Total load over m inputs:
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Reacting to overload

• Where in the query plan to drop tuples, which tuples, and how many 

• The question of where is equivalent to placing special drop operators in 
the best positions in the query plan 

• Drop operators can be placed at any location in the query plan 

• Dropping near the source avoids wasting work but it might affect results of 
multiple queries if the source is connected to multiple queries.
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Load Shedding Road Map (LSRM)

• A pre-computed table that contains materialized load shedding plans 
ordered by how much load shedding they will cause. 

• Each row contains a plan with  
• expected cycle savings 
• locations for drop operations 
• drop amounts 
• QoS effects (provided that tuples can be associated with a utility metric)
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Which tuples to drop?
• Relevant when load shedding takes into account the semantic 

importance of tuples with respect to results quality 

• Drop at random: 
• Insert random sampling operators in the query plan, parametrized with a sampling rate  
• The rate defines the probability to discard a tuple and is computed based on statistics and 

operator selectivity 
• The optimization objective is to achieve the highest possible accuracy given the constraint that 

system throughput matches the data input rate 
• In the case of known aggregation functions, results can be scaled using approximate query 

processing techniques, where accuracy is measured in terms of relative error in the computed 
query answers.
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Which tuples to drop?
• Window-aware load shedding applies shedding to entire windows 

instead of individual tuples 
• When discarding tuples at the sources or another point in a query with multiple window 

aggregations, it is unclear how shedding will affect the correctness of downstream window 
operators.  

• This approach preserves window integrity and guarantees that the results under shedding will 
not be approximations but a subset of the exact answers. 

• Concept-driven load shedding measures tuple utility  
• The method selects tuples to discard by relying on the notion of a window-based concept drift.  
• The metric is defined by computing a similarity metric across windows.
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How many tuples to drop?
• The amount of tuples to discard strongly depends on the decisions of where 

and which tuples to shed.  

• If input rates and processing capacity are known or easy to measure, estimates 
can be computed in a straight-forward manner.  

• Estimations based on static operator selectivities and heuristics are unsuitable 
for frequent load fluctuations.  

• Naive approaches can lead to system instability or unnecessary load shedding. 

• In window-aware load shedding, queries need to define a batch size: an 
application-specific maximum tolerance to gaps. 

• This parameter indicates how many consecutive missing results the query can tolerate. 
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Backpressure
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Rate control
• In a network of consumers and producers such as a streaming execution graph with 

multiple operators, back-pressure has the effect that all operators slow down to match 
the processing speed of the slowest consumer.  

• If the bottleneck operator is far down the dataflow graph, back-pressure propagates to 
upstream operators, eventually reaching the data stream sources.  

• To ensure no data loss, a persistent input message queue, such as Kafka, and enough 
storage is required.
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Durably buffer 
events in a channel 

or source

Adjust processing rate of all 
operators to that of the 

slowest part of the pipeline
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Progress is controlled though buffer availability

A enters the system 
and is processed by 

Task 1

The result is 
serialized into an 

output buffer
The buffer is 

shipped to Task 2

• Each produced and consumed stream have managed buffer pools 
with bounded capacity. 

• A buffer pool is a set of buffers which are recycled after they have 
been consumed and can be re-used.



🤧😷🤒 Vasiliki Kalavri | Boston University 202024

Local exchange: If both producer and consumer run on the same node the 
buffer is recycled as soon as it is consumed. 
• The producer slows down according to the rate the consumer recycles 

buffers. 

Remote exchange: If tasks run on different worker nodes, the buffer can be 
recycled as soon as it is on the TCP channel. 
• If there is no buffer on the consumer side, reading from the TCP connection 

is interrupted.  
• The producer uses a threshold to control how much data is in-flight. 
• The producer is slowed down if it cannot put new data on the wire. 

Rate adjustment
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Remarks on buffer-based rate control

• Simple mechanism:the buffer occupancy controls the data rate 
automatically. 

• The maximum throughput is limited by the processing rate of the slowest 
task. 

• Parallel tasks are connected via virtual channels multiplexed over TCP 
connections: 

• In the presence of skew, a single overload channel can cause the slowdown of the 
entire dataflow… can we do better?
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Credit-based flow control

• Credit-based flow control (CFC) is a link-by-link, per virtual channel 
congestion control technique used in ATM network switches.  

• To exchange data through an ATM network, each pair of endpoints first 
needs to establish a virtual circuit (VC) or connection. 

• CFC uses a credit system to signal the availability of buffer space from 
receivers to senders. 
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• Senders maintain a credit balance for all their receivers and receivers regularly 
send notifications upstream containing their number of available credits.  

• One credit corresponds to some amount of buffer space so that a sender can 
know how much data they can afford to forward downstream.
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Credit-based flow control
• This classic networking technique turns out to be very useful for load 

management in modern, highly-parallel stream processors and is 
implemented in Apache Flink. 

• Each task informs its senders of its buffer availability via credit 
messages.  

• This way, senders always know whether receivers have the required 
capacity to handle data messages.  

• When the credit of a receiver drops to zero (or a specified threshold), 
backpressure appears on its virtual channel.
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Remarks on CFC
• Bakcpressure is inflicted on pairs of communicating tasks only  

• it does not interfere with other tasks sharing the same TCP connection. 

• CFC maximizes network utilization and prevents faults caused by high congestion.  

• In the presence of bursty traffic, CFC causes backpressure to build up fast and 
propagate along congested VCs to their sources which can be throttled.  

• Essentially, CFC allows blocking excess traffic outside the network to protect it. 
• This is crucial in the presence of data skew where a single overloaded task could otherwise 

block the flow of data to all other downstream operator instances.  

• On the downside, the additional credit announcement messages might increase 
end-to-end latency.
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