
🤧😷🤒 Vasiliki Kalavri | Boston University 2020

CS 591 K1:
Data Stream Processing and Analytics

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

Spring 2020

4/09: Flow control and load shedding

mailto:vkalavri@bu.edu

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers
can process events.

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers
can process events.

• What happens if consumers cannot keep up with the event rate?

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers
can process events.

• What happens if consumers cannot keep up with the event rate?
• drop messages

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers
can process events.

• What happens if consumers cannot keep up with the event rate?
• drop messages
• buffer messages in a queue: what if the queue grows larger than available memory?

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers
can process events.

• What happens if consumers cannot keep up with the event rate?
• drop messages
• buffer messages in a queue: what if the queue grows larger than available memory?
• block the producer (back-pressure, flow control)

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Load management approaches

3

!Load
shedder

(a) Load shedding (b) Back-pressure (c) Elasticity

Selectively drop records:

• Temporarily trades-off result
accuracy for sustainable
performance.

• Suitable for applications with strict
latency constraints that can tolerate
approximate results.

Slow down the flow of data:

• The system buffers excess data for
later processing, once input rates
stabilize.

• Requires a persistent input source.
• Suitable for transient load increase.

Scale resource allocation:

• Addresses the case of increased
load and additionally ensures no
resources are left idle when the
input load decreases.

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Load shedding

• Load shedding is the process of discarding data when input rates
increase beyond system capacity.

• Load shedding techniques operate in a dynamic fashion: the system
detects an overload situation during runtime and selectively drops tuples
according to a QoS specification.

• Similar to congestion control or video streaming in a lower quality.

4

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png

5

https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Load shedding as an optimization problem

N: query network
I: set of input streams with known arrival rates
C: system processing capacity
H: headroom factor, i.e. a conservative estimate of the percentage of resources required by the system at steady state
Load(N(I)): the load as a fraction of the total capacity C that network N(I) presents
Uacc: the aggregate utility

6

Find a new network N' such that

Load(N’(I))< H x C and

Uacc(N(I)) - Uacc(N'I)) is minimized

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Implementation

• Load shedding is commonly implemented by a standalone component
integrated with the stream processor

• The load shedder continuously monitors input rates or other system
metrics and can access information about the running query plan

• It detects overload and decides what actions to take in order to maintain acceptable
latency and minimize result quality degradation.

7

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

DSMS with load shedder

8

Synopsis Maintenance
Synopsis

for S1

Synopsis
for Sr

…

Fast
approximate

answers

…

S1

S2

Sr

In
pu

t M
an

ag
er Scheduler

QoS Monitor

Load Shedder

Query
Execution

Engine

QmQ2Q1

Ad-hoc or
continuous queries

Input streams

…

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Load shedding decisions
• When to shed load?

• detect overload quickly to avoid latency increase
• monitor input rates

• Where in the query plan?
• dropping at the sources vs. dropping at bottleneck operators

• How much load to shed?
• enough for the system to keep-up

• Which tuples to drop?
• improve latency to an acceptable level
• cause only minimal results quality degradation

9

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Detecting overload
• When to shed load? An incorrectly triggered shedding action can cause

unnecessary result degradation!

• Load shedding components rely on statistics gathered during execution:
• A statistics manager module monitors processing and input rates and periodically

estimates operator selectivities.
• The load shedder assigns a cost, ci, in cycles per tuple, and a selectivity, si, to each

operator i.
• The statistics manager collects metrics and estimates those parameters either

continuously or by running the system for a designated period of time, prior to regular
query execution.

10

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Estimating cost and selectivity

11

• Selectivity: how many records does the operator produce per record in its
input?

• map: 1 in 1 out
• filter: 1 in, 1 or 0 out
• flatMap, join: 1 in 0, 1, or more out

• Cost: how many records can an operator process in a unit of time?

#records_in #records_out

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Overload detection (II)

12

Load coefficient for input I: Total load over m inputs:

I c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0 O

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Overload detection (II)

12

Load coefficient for input I: Total load over m inputs:

I c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0 O

5

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Overload detection (II)

12

Load coefficient for input I: Total load over m inputs:

I c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0 O

512.5

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Overload detection (II)

12

Load coefficient for input I: Total load over m inputs:

I c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0 O

512.5

L=18.75

🤧😷🤒 Vasiliki Kalavri | Boston University 202013

I2 c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0

12.5

L2=18.75

O2

I1 c=10 
s=0.5

c=10
s=0.8

c=5
s=1.0 O1

c=10
s=0.9

5

🤧😷🤒 Vasiliki Kalavri | Boston University 202013

I2 c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0

12.5

L2=18.75

O2

I1 c=10 
s=0.5

c=10
s=0.8

c=5
s=1.0 O1

c=10
s=0.9

514

5

5

19

5

🤧😷🤒 Vasiliki Kalavri | Boston University 202013

I2 c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0

12.5

L2=18.75

O2

I1 c=10 
s=0.5

c=10
s=0.8

c=5
s=1.0 O1

c=10
s=0.9

L1=26.5

514

5

5

19

5

🤧😷🤒 Vasiliki Kalavri | Boston University 202013

I2 c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0

12.5

L2=18.75

O2

I1 c=10 
s=0.5

c=10
s=0.8

c=5
s=1.0 O1

c=10
s=0.9

L1=26.5

514

5

5

19

5

r1=10 r/s

r2=20 r/s

🤧😷🤒 Vasiliki Kalavri | Boston University 202013

I2 c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0

12.5

L2=18.75

O2

I1 c=10 
s=0.5

c=10
s=0.8

c=5
s=1.0 O1

c=10
s=0.9

L1=26.5

514

5

5

19

5

r1=10 r/s

r2=20 r/s

LT=?

🤧😷🤒 Vasiliki Kalavri | Boston University 202013

I2 c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0

12.5

L2=18.75

O2

I1 c=10 
s=0.5

c=10
s=0.8

c=5
s=1.0 O1

c=10
s=0.9

L1=26.5

514

5

5

19

5

r1=10 r/s

r2=20 r/s

LT=640 cycles/s

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Reacting to overload

• Where in the query plan to drop tuples, which tuples, and how many

• The question of where is equivalent to placing special drop operators in
the best positions in the query plan

• Drop operators can be placed at any location in the query plan

• Dropping near the source avoids wasting work but it might affect results of
multiple queries if the source is connected to multiple queries.

14

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Load Shedding Road Map (LSRM)

• A pre-computed table that contains materialized load shedding plans
ordered by how much load shedding they will cause.

• Each row contains a plan with
• expected cycle savings
• locations for drop operations
• drop amounts
• QoS effects (provided that tuples can be associated with a utility metric)

15

🤧😷🤒 Vasiliki Kalavri | Boston University 202016

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Which tuples to drop?
• Relevant when load shedding takes into account the semantic

importance of tuples with respect to results quality

• Drop at random:
• Insert random sampling operators in the query plan, parametrized with a sampling rate
• The rate defines the probability to discard a tuple and is computed based on statistics and

operator selectivity
• The optimization objective is to achieve the highest possible accuracy given the constraint that

system throughput matches the data input rate
• In the case of known aggregation functions, results can be scaled using approximate query

processing techniques, where accuracy is measured in terms of relative error in the computed
query answers.

17

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Which tuples to drop?
• Window-aware load shedding applies shedding to entire windows

instead of individual tuples
• When discarding tuples at the sources or another point in a query with multiple window

aggregations, it is unclear how shedding will affect the correctness of downstream window
operators.

• This approach preserves window integrity and guarantees that the results under shedding will
not be approximations but a subset of the exact answers.

• Concept-driven load shedding measures tuple utility
• The method selects tuples to discard by relying on the notion of a window-based concept drift.
• The metric is defined by computing a similarity metric across windows.

18

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

How many tuples to drop?
• The amount of tuples to discard strongly depends on the decisions of where

and which tuples to shed.

• If input rates and processing capacity are known or easy to measure, estimates
can be computed in a straight-forward manner.

• Estimations based on static operator selectivities and heuristics are unsuitable
for frequent load fluctuations.

• Naive approaches can lead to system instability or unnecessary load shedding.

• In window-aware load shedding, queries need to define a batch size: an
application-specific maximum tolerance to gaps.

• This parameter indicates how many consecutive missing results the query can tolerate.

19

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Backpressure

20

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Rate control
• In a network of consumers and producers such as a streaming execution graph with

multiple operators, back-pressure has the effect that all operators slow down to match
the processing speed of the slowest consumer.

• If the bottleneck operator is far down the dataflow graph, back-pressure propagates to
upstream operators, eventually reaching the data stream sources.

• To ensure no data loss, a persistent input message queue, such as Kafka, and enough
storage is required.

21

o1src o2

back-pressure
target: 40 rec/s

10 rec/s 100 rec/s

🤧😷🤒 Vasiliki Kalavri | Boston University 202022

🤧😷🤒 Vasiliki Kalavri | Boston University 202022

Durably buffer
events in a channel

or source

Adjust processing rate of all
operators to that of the

slowest part of the pipeline

🤧😷🤒 Vasiliki Kalavri | Boston University 202023

Progress is controlled though buffer availability

A enters the system
and is processed by

Task 1

The result is
serialized into an

output buffer
The buffer is

shipped to Task 2

• Each produced and consumed stream have managed buffer pools
with bounded capacity.

• A buffer pool is a set of buffers which are recycled after they have
been consumed and can be re-used.

🤧😷🤒 Vasiliki Kalavri | Boston University 202024

Local exchange: If both producer and consumer run on the same node the
buffer is recycled as soon as it is consumed.
• The producer slows down according to the rate the consumer recycles

buffers.

Remote exchange: If tasks run on different worker nodes, the buffer can be
recycled as soon as it is on the TCP channel.
• If there is no buffer on the consumer side, reading from the TCP connection

is interrupted.
• The producer uses a threshold to control how much data is in-flight.
• The producer is slowed down if it cannot put new data on the wire.

Rate adjustment

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Remarks on buffer-based rate control

• Simple mechanism:the buffer occupancy controls the data rate
automatically.

• The maximum throughput is limited by the processing rate of the slowest
task.

• Parallel tasks are connected via virtual channels multiplexed over TCP
connections:

• In the presence of skew, a single overload channel can cause the slowdown of the
entire dataflow… can we do better?

25

🤧😷🤒 Vasiliki Kalavri | Boston University 202026

Credit-based flow control

• Credit-based flow control (CFC) is a link-by-link, per virtual channel
congestion control technique used in ATM network switches.

• To exchange data through an ATM network, each pair of endpoints first
needs to establish a virtual circuit (VC) or connection.

• CFC uses a credit system to signal the availability of buffer space from
receivers to senders.

🤧😷🤒 Vasiliki Kalavri | Boston University 202027

• Senders maintain a credit balance for all their receivers and receivers regularly
send notifications upstream containing their number of available credits.

• One credit corresponds to some amount of buffer space so that a sender can
know how much data they can afford to forward downstream.

🤧😷🤒 Vasiliki Kalavri | Boston University 202028

Credit-based flow control
• This classic networking technique turns out to be very useful for load

management in modern, highly-parallel stream processors and is
implemented in Apache Flink.

• Each task informs its senders of its buffer availability via credit
messages.

• This way, senders always know whether receivers have the required
capacity to handle data messages.

• When the credit of a receiver drops to zero (or a specified threshold),
backpressure appears on its virtual channel.

🤧😷🤒 Vasiliki Kalavri | Boston University 202029

Remarks on CFC
• Bakcpressure is inflicted on pairs of communicating tasks only

• it does not interfere with other tasks sharing the same TCP connection.

• CFC maximizes network utilization and prevents faults caused by high congestion.

• In the presence of bursty traffic, CFC causes backpressure to build up fast and
propagate along congested VCs to their sources which can be throttled.

• Essentially, CFC allows blocking excess traffic outside the network to protect it.
• This is crucial in the presence of data skew where a single overloaded task could otherwise

block the flow of data to all other downstream operator instances.

• On the downside, the additional credit announcement messages might increase
end-to-end latency.

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Lecture references
• Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stonebraker. Load

shedding in a data stream manager. (VLDB ’03)

• N. Tatbul and S. Zdonik. Window-aware load shedding for aggregation queries over data
streams. (VLDB’06)

• N. Tatbul, U. Çetintemel, and S. Zdonik. Staying fit: Efficient load shedding techniques for
distributed stream processing. (VLDB’07)

• N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. Concept-driven load shedding: Reducing
size and error of voluminous and variable data streams. (IEEE Big Data ’18)

• H. T. Kung, T. Blackwell, and A. Chapman. Credit-based flow control for atm networks: Credit
update protocol, adaptive credit allocation and statistical multiplexing. (ACM SGCOMM’94).

• https://www.ververica.com/blog/how-flink-handles-backpressure

• https://flink.apache.org/2019/06/05/flink-network-stack.html

30

https://www.ververica.com/blog/how-flink-handles-backpressure
https://flink.apache.org/2019/06/05/flink-network-stack.html

