CS 591 K1: **Data Stream Processing and Analytics** Spring 2020

4/09: Flow control and load shedding

Vasiliki (Vasia) Kalavri vkalavri@bu.edu

can process events.

• Producers can generate events in a higher rate than the rate consumers

- can process events.
- What happens if consumers cannot keep up with the event rate?

Producers can generate events in a higher rate than the rate consumers

- can process events.
- What happens if consumers cannot keep up with the event rate?
 - drop messages \bullet

Producers can generate events in a higher rate than the rate consumers

- can process events.
- What happens if consumers cannot keep up with the event rate?
 - drop messages \bullet
 - \bullet

Producers can generate events in a higher rate than the rate consumers

buffer messages in a queue: what if the queue grows larger than available memory?

- Producers can generate events in a higher rate than the rate consumers can process events.
- What happens if consumers cannot keep up with the event rate?
 - drop messages
 - buffer messages in a queue: what if the queue grows larger than available memory? block the producer (back-pressure, flow control)
 - \bullet \bullet

(a) Load shedding

Selectively drop records:

- Temporarily trades-off result \bullet accuracy for sustainable performance.
- Suitable for applications with strict latency constraints that can tolerate approximate results.

Slow down the flow of data:

- stabilize.

• The system buffers excess data for later processing, once input rates

 Requires a persistent input source. Suitable for transient load increase. Scale resource allocation:

 Addresses the case of increased load and additionally ensures no resources are left idle when the input load decreases.

Load shedding

- Load shedding is the process of **discarding data** when input rates increase beyond system capacity.
- Load shedding techniques operate in a dynamic fashion: the system detects an overload situation during runtime and selectively drops tuples according to a QoS specification.
- Similar to **congestion control** or video streaming in a lower quality.

https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png

Load shedding as an optimization problem

- N: query network
- I: set of input streams with known arrival rates
- C: system processing capacity
- Load (N(I)): the load as a fraction of the total capacity C that network N(I) presents U_{acc}: the aggregate utility

$Load(N'(I)) < H \times C$ and

H: headroom factor, i.e. a conservative estimate of the percentage of resources required by the system at steady state

Find a new network N' such that

 $U_{acc}(N(I)) - U_{acc}(N'I))$ is minimized

Implementation

- Load shedding is commonly implemented by a standalone component integrated with the stream processor
- The load shedder continuously monitors input rates or other system metrics and can access information about the running query plan
 - It detects overload and decides what actions to take in order to maintain acceptable latency and minimize result quality degradation.

Load shedding decisions

- When to shed load?
 - detect overload quickly to avoid latency increase
 - monitor input rates \bullet
- Where in the query plan?
 - dropping at the sources vs. dropping at bottleneck operators lacksquare
- How much load to shed?
 - enough for the system to keep-up
- Which tuples to drop?
 - improve latency to an acceptable level
 - cause only minimal results quality degradation

Detecting overload

- When to shed load? An incorrectly triggered shedding action can cause unnecessary result degradation!
- Load shedding components rely on statistics gathered during execution: • A statistics manager module monitors processing and input rates and periodically
- estimates operator selectivities.
 - The load shedder assigns a cost, **c**_i, in cycles per tuple, and a selectivity, **s**_i, to each operator **i**.
 - The statistics manager collects metrics and estimates those parameters either continuously or by running the system for a designated period of time, prior to regular query execution.

Estimating cost and selectivity

#records_in

- input?
 - map: 1 in 1 out
 - filter: 1 in, 1 or 0 out
 - flatMap, join: 1 in 0, 1, or more out lacksquare
- Cost: how many records can an operator process in a unit of time?

#records_out

• Selectivity: how many records does the operator produce per record in its

Load coefficient for input *I*: Total load over *m* inputs:

$$L = \sum_{i=1}^{n} (\prod_{j=1}^{i-1} s_j) \times c_i$$

$$I \longrightarrow \begin{bmatrix} c=10 \\ s=0.7 \end{bmatrix}$$

$$L_T = \sum_{i=1}^m L \times r_i$$

Load coefficient for input *I*: Total load over *m* inputs:

$$L = \sum_{i=1}^{n} (\prod_{j=1}^{i-1} s_j) \times c_i$$

$$I \longrightarrow \begin{bmatrix} c=10 \\ s=0.7 \end{bmatrix}$$

$$L_T = \sum_{i=1}^m L \times r_i$$

Load coefficient for input *I*: Total load over *m* inputs:

$$L = \sum_{i=1}^{n} (\prod_{j=1}^{i-1} s_j) \times c_i$$

$$I \longrightarrow C=10$$

S=0.7

$$L_T = \sum_{i=1}^m L \times r_i$$

Load coefficient for input *I*: Total load over *m* inputs:

$$L = \sum_{i=1}^{n} (\prod_{j=1}^{i-1} s_j) \times c_i$$

$$L_T = \sum_{i=1}^m L \times r_i$$

- the best positions in the query plan
- Where in the query plan to drop tuples, which tuples, and how many • The question of where is equivalent to placing special drop operators in
- Drop operators can be placed at any location in the query plan
- Dropping near the source avoids wasting work but it might affect results of multiple queries if the source is connected to multiple queries.

Reacting to overload

Load Shedding Road Map (LSRM)

- ordered by how much load shedding they will cause.
- Each row contains a plan with
 - expected cycle savings
 - locations for drop operations
 - drop amounts
 - QoS effects (provided that tuples can be associated with a utility metric)

• A pre-computed table that contains materialized load shedding plans

Which tuples to drop?

- Relevant when load shedding takes into account the **semantic** importance of tuples with respect to results quality
- Drop at **random**:
 - Insert random sampling operators in the query plan, parametrized with a **sampling rate**
 - The rate defines the probability to discard a tuple and is computed based on statistics and \bullet operator selectivity
 - The optimization objective is to achieve the highest possible accuracy given the constraint that system throughput matches the data input rate
 - In the case of known aggregation functions, results can be scaled using approximate query processing techniques, where accuracy is measured in terms of relative error in the computed query answers.

Which tuples to drop?

- Window-aware load shedding applies shedding to entire windows instead of individual tuples
 - When discarding tuples at the sources or another point in a query with multiple window lacksquareaggregations, it is unclear how shedding will affect the correctness of downstream window operators.
 - This approach preserves window integrity and guarantees that the results under shedding will not be approximations but a subset of the exact answers.
- **Concept-driven** load shedding measures tuple utility
 - The method selects tuples to discard by relying on the notion of a window-based concept drift. • The metric is defined by computing a similarity metric across windows.

How many tuples to drop?

- The amount of tuples to discard strongly depends on the decisions of where and which tuples to shed.
- If input rates and processing capacity are known or easy to measure, estimates can be computed in a straight-forward manner.
- Estimations based on static operator selectivities and heuristics are unsuitable for frequent load fluctuations.
- Naive approaches can lead to system instability or unnecessary load shedding.
- In window-aware load shedding, queries need to define a batch size: an application-specific maximum tolerance to gaps.
 - This parameter indicates how many consecutive missing results the query can tolerate.

Backpressure

- the processing speed of **the slowest consumer**.
- upstream operators, eventually reaching the data stream sources.
- storage is required.

Rate control

 In a network of consumers and producers such as a streaming execution graph with multiple operators, back-pressure has the effect that **all operators slow down** to match

• If the bottleneck operator is far down the dataflow graph, back-pressure propagates to

• To ensure no data loss, a persistent input message queue, such as Kafka, and enough

Progress is controlled though buffer availability

- with bounded capacity.
- been consumed and can be re-used.

• Each produced and consumed stream have managed buffer pools

• A buffer pool is a set of buffers which are recycled after they have

Rate adjustment

buffer is recycled as soon as it is consumed.

• The producer slows down according to the rate the consumer recycles buffers.

recycled as soon as it is on the TCP channel.

- If there is no buffer on the consumer side, reading from the TCP connection is interrupted.
- The producer uses a threshold to control how much data is *in-flight*.
- The producer is slowed down if it cannot put new data on the wire.

Local exchange: If both producer and consumer run on the same node the

Remote exchange: If tasks run on different worker nodes, the buffer can be

Remarks on buffer-based rate control

- Simple mechanism: the buffer occupancy controls the data rate automatically.
- task.
- connections:
 - entire dataflow... can we do better?

• The maximum throughput is limited by the processing rate of the slowest

Parallel tasks are connected via virtual channels multiplexed over TCP

• In the presence of skew, a single overload channel can cause the slowdown of the

Credit-based flow control

- Credit-based flow control (CFC) is a link-by-link, per virtual channel congestion control technique used in ATM network switches.
- To exchange data through an ATM network, each pair of endpoints first needs to establish a virtual circuit (VC) or connection.
- CFC uses a **credit system** to signal the availability of buffer space from receivers to senders.

- know how much data they can afford to forward downstream.

• Senders maintain a credit balance for all their receivers and receivers regularly send notifications upstream containing their number of available credits.

• One credit corresponds to some amount of buffer space so that a sender can

Credit-based flow control

- implemented in Apache Flink.
- Each task informs its senders of its buffer availability via credit messages.
- capacity to handle data messages.
- backpressure appears on its virtual channel.

 This classic networking technique turns out to be very useful for load management in modern, highly-parallel stream processors and is

• This way, senders always know whether receivers have the required

• When the credit of a receiver drops to zero (or a specified threshold),

Remarks on CFC

- Bakcpressure is inflicted on pairs of communicating tasks only • it does not interfere with other tasks sharing the same TCP connection.
- CFC maximizes network utilization and prevents faults caused by high congestion.
- In the presence of bursty traffic, CFC causes backpressure to build up fast and propagate along congested VCs to their sources which can be throttled.
- Essentially, CFC allows blocking excess traffic *outside the network* to protect it. • This is crucial in the presence of data skew where a single overloaded task could otherwise block the flow of data to all other downstream operator instances.
- On the downside, the additional credit announcement messages might increase end-to-end latency.

- Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stonebraker. Load shedding in a data stream manager. (VLDB '03)
- N. Tatbul and S. Zdonik. Window-aware load shedding for aggregation queries over data streams. (VLDB'06)
- N. Tatbul, U. Cetintemel, and S. Zdonik. Staying fit: Efficient load shedding techniques for **distributed stream processing**. (VLDB'07)
- N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. Concept-driven load shedding: Reducing size and error of voluminous and variable data streams. (IEEE Big Data '18)
- H. T. Kung, T. Blackwell, and A. Chapman. Credit-based flow control for atm networks: Credit update protocol, adaptive credit allocation and statistical multiplexing. (ACM SGCOMM'94).
- https://www.ververica.com/blog/how-flink-handles-backpressure
- https://flink.apache.org/2019/06/05/flink-network-stack.html \bullet

Lecture references

