CS 591 K1:

Data Stream Processing and Analytics
Spring 2020

4/09: Flow control and load shedding

Vasiliki (Vasia) Kalavri
vkalavri@bu.edu

e @ Vasiiki Kalavr | Boston University 2020

mailto:vkalavri@bu.edu

Keeping up with the producers

 Producers can generate events in a higher rate than the rate consumers
can Process events.

e @ Vaslki Kalavri | Boston University 2020

Keeping up with the producers

 Producers can generate events in a higher rate than the rate consumers
can Process events.

 \What happens it consumers cannot keep up with the event rate”

e @ Vaslki Kalavri | Boston University 2020

Keeping up with the producers

 Producers can generate events in a higher rate than the rate consumers
can Process events.

 \What happens it consumers cannot keep up with the event rate”

e drop messages

e @ Vaslki Kalavri | Boston University 2020

Keeping up with the producers

 Producers can generate events in a higher rate than the rate consumers
can Process events.

 \What happens it consumers cannot keep up with the event rate”

e drop messages
e puffer messages in a queue: what if the queue grows larger than available memory?”

e @ Vaslki Kalavri | Boston University 2020

Keeping up with the producers

 Producers can generate events in a higher rate than the rate consumers
can Process events.

 \What happens it consumers cannot keep up with the event rate”

e drop messages
e puffer messages in a queue: what if the queue grows larger than available memory?”
* Dblock the producer (back-pressure, flow control)

e @ Vaslki Kalavri | Boston University 2020

| oad management approaches

df Load h 77 N\ "/ N\ /7N -
0000000000) re, (0D O()0 DI 000000000 (ooooo) o oo(v)0O@ 1000000000
g y N N NS
(a) Load shedding (b) Back-pressure (c) Elasticity

Selectively drop records: Slow down the flow of data: Scale resource allocation:

* Temporarily trades-off result The system buffers excess data for ~ « Addresses the case of increased
accuracy for sustainable later processing, once input rates load and additionally ensures no
performance. - stabilize. resources are left idle when the

* Suitable for applications with strict » Requires a persistent input source. input load decreases.

latency constraints that can tolerate

| * Suitable for transient load increase.
approximate results.

; e @ Vasiiki Kalavr | Boston University 2020

| 0ad shedding

* |oad shedding is the process of discarding data when input rates
iIncrease beyond system capacity.

e |oad shedding technigues operate in a dynamic fashion: the system
detects an overload situation during runtime and selectively drops tuples
according to a QoS specification.

o Similar to congestion control or video streaming in a lower quality.

e @ Vasiiki Kalavr | Boston University 2020

Manifest File

Adaptive Streaming Overview

INPUT: High bit rate OUTPUT: Multiple bit rate

Manifest File every
x seconds

Lots of requests:
different bit rate depending
on download speed.

Encoder Web Server

by Dave Seddon 2011/07/28

https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview daseddon_2011_07_28.png

69 & \asliki Kalawr | Boston University 2020

https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png

| oad shedding as an optimization problem

N: query network

I. set of input streams with known arrival rates

C: system processing capacity

H: headroom factor, i.e. a conservative estimate of the percentage of resources required by the system at steady state
Load (N (I)):the load as a fraction of the total capacity C that network N (I) presents

Uace: the aggregate utility

FiINnd a new network N' such that

Load(N’'(I))< H x Cand

Uacc(N(I)) — Uacc(N'I)) IS MINIMIized

e @ Vaslki Kalavri | Boston University 2020

Implementation

e | oad shedding is commonly implemented by a standalone component
iIntegrated with the stream processor

 The load shedder continuously monitors input rates or other system
metrics and can access information about the running query plan

* |t detects overload and decides what actions to take Iin order to maintain acceptable
atency and minimize result quality degradation.

e @ Vaslki Kalavri | Boston University 2020

DSMS with load shedder

Synopsis Maintenance

SYNopsIs Synopsis
for S+ for S;

Input streams

| | Fast
S _ Query .
 S80EE S [Scheduler] Execution approximate
qV]
- Engine dnNswers
S: 0888 —~ [QoS Monitor]
5 3 hl
= L oad Shedder
Ad-hoc or

continuous queries
Q1 Q> Qm

@ Vasiiki Kaawr | Boston University 2020

| oad shedding decisions

When to shed load?

e detect overload quickly to avoid latency increase

 monitor input rates

Where in the query plan?

e dropping at the sources vs. dropping at bottleneck operators

How much load to shed?

* enough for the system to keep-up

Which tuples to drop?

 Improve latency to an acceptable level
e cause only minimal results quality degradation

. eY @ Vasiiki Kalavr | Boston University 2020

Detecting overload

 \When to shed load”? An incorrectly triggered shedding action can cause
unnecessary result degradation!

* | oad shedding components rely on statistics gathered during execution:

* A statistics manager module monitors processing and input rates and periodically
estimates operator selectivities.

* [he load shedder assigns a cost, Ci, In cycles per tuple, and a selectivity, si, to each
operator I.

* [he statistics manager collects metrics and estimates those parameters either

continuously or by running the system for a designated period of time, prior to regular
guery execution.

10 e @ Vaslki Kalavri | Boston University 2020

-stimating cost and selectivity

——— —_—

#records In . Hrecords out

e Selectivity: how many records does the operator produce per record in its
input?
e map:1in1out

e filter: 1in, 1 or O out

e flatMap, join: 1in O, 1, or more out

o (Cost: how many records can an operator process in a unit of time?

11 e @ Vaslki Kalavri | Boston University 2020

Overload detection (Il

Load coefficient for input / Total load over m inputs:
n 1—1 m
LZZ(HSJ-)XCi L, = Y L Xr,
l:l J:l l=1
|——| So7 [s0s [sor0 [— O

15 e @ Vaslki Kalavri | Boston University 2020

Overload detection (Il

Load coefficient for input / Total load over m inputs:
n 1—1 m
L=Z(HSj)XCi L.=) L Xr,
l:l J:l i=1

c=5
s=0.7/ s=0.5 s=1.0 O

/ S c=10 S c=10

15 e @ Vaslki Kalavri | Boston University 2020

Overload detection (Il

Load coefficient for input / Total load over m inputs:
n 1—1 m
L=Z(HSj)XCi L.=) L xr,
l:l J:l i=1

c=5
s=0.7/ s=0.5 s=1.0 O

c=10

/ S c=10

15 6@ Vasiiki Kaavr | Boston University 2020

Overload detection (Il

Load coefficient for input / Total load over m inputs:
n 1—1 -
L=Z(HSJ-)XCi L.=) L xr,
l:l J:l i=1

c=5
s=0.7/ s=0.5 s=1.0 O

c=10

/ S c=10

15 e @ Vaslki Kalavri | Boston University 2020

c=10
s=0.5

c=10
s=0.8

c=5
s=1.0

c=10
s=0.9

c=10
s=0./

c=10
s=0.5

13

@ Vasiiki Kaawr | Boston University 2020

c=10
s=0.5

c=10
s=0.8

c=5
s=1.0

c=10
s=0.9

c=10
s=0.7

c=10
s=0.5

13

c=5
s=1.0

69 & \asliki Kalawr | Boston University 2020

c=10
s=0.5

c=10
s=0.8

c=5
s=1.0

c=10
s=0.9

c=10
s=0.7

c=10
s=0.5

13

c=5
s=1.0

69 & \asliki Kalawr | Boston University 2020

| 4=26.5

— —
v v

c=10
s=0.5

c=10
s=0.8

c=5
s=1.0

c=10
s=0.9

c=10
s=0.7

c=10
s=0.5

13

c=5
s=1.0

Ep @ Vasliki Kalavr | Boston University 2020

[4=26.5

— —
v v

c=10
s=0.5

c=10
s=0.8

c=5
s=1.0

c=10
s=0.9

c=10
s=0.7

c=10
s=0.5

13

c=5
s=1.0

Ep @ Vasliki Kalavr | Boston University 2020

[4=26.5

— —
v v

c=10
s=0.5

c=10
s=0.8

c=5
s=1.0

c=10
s=0.9

c=10
s=0.7

c=10
s=0.5

> (01

Lt=640 cycles/s

13

c=5
s=1.0

Ep @ Vasliki Kalavr | Boston University 2020

Reacting to overload

Where in the query plan to drop tuples, which tuples, and how many

The question of where is equivalent to placing special drop operators in
the best positions In the query plar

Drop operators can be placed at any location in the query plan

Dropping near the source avoids wasting work but it might affect results of
multiple queries If the source is connected to multiple queries.

14 e @ Vaslki Kalavri | Boston University 2020

| oad Shedding Road Map (LSRM)

* A pre-computed table that contains materialized load shedding plans
ordered by how much load shedding they will cause.

 Each row contains a plan with

* expected cycle savings
e |ocations for drop operations
e drop amounts

* QoS effects (provided that tuples can be associated with a utility metric)

15 e @ Vaslki Kalavri | Boston University 2020

Cycle Savings Drop Insertion Plan QoS Cursors /\ §°
3
cl <
)
S
c2 =
3
c3 -
3
- s
S0
S
S
S
<
cl “
N
S
5 =
C
o
S
c3 =

16

on Unwiersity 2020

Which tuples to drop”

* Relevant when load shedding takes into account the semantic
importance of tuples with respect to results quality

 Drop at random:

* [nsert random sampling operators in the query plan, parametrized with a sampling rate

 The rate defines the probability to discard a tuple and is computed based on statistics and
operator selectivity

 [he optimization objective is to achieve the highest possible accuracy given the constraint that
system throughput matches the data input rate

* |n the case of known aggregation functions, results can be scaled using approximate query
orocessing techniques, where accuracy Is measured in terms of relative error in the computed
guery answers.

17 6@ Vasiiki Kaavr | Boston University 2020

Which tuples to drop”

 Window-aware load shedding applies shedding to entire windows
iInstead of individual tuples

 When discarding tuples at the sources or another point in a query with multiple window

aggregations, it is unclear how shedding will affect the correctness of downstream window
operators.

 This approach preserves window integrity and guarantees that the results under shedding will
not be approximations but a subset of the exact answers.

Concept-driven [oad shedding measures tuple utility

 The method selects tuples to discard by relying on the notion of a window-based concept drift.

 The metric is defined by computing a similarity metric across windows.

18 e @ Vaslki Kalavri | Boston University 2020

How many tuples to drop?

The amount of tuples to discard strongly depends on the decisions of where
and which tuples to shed.

f iInput rates and processing capacity are known or easy to measure, estimates
can be computed in a straight-forward manner.

Estimations based on static operator selectivities and heuristics are unsuitable
for frequent load fluctuations.

Nalve approaches can lead to system instability or unnecessary load shedding.

In window-aware load shedding, queries need to define a batch size: an
application-specific maximum tolerance to gaps.

* This parameter indicates how many consecutive missing results the query can tolerate.

19 e @ Vaslki Kalavri | Boston University 2020

BacKpressure

. 6@ Vasiiki Kaavr | Boston University 2020

* 1IN
1]

th

Rate control

a network of consumers and producers such as a streaming execution graph wit

i

ultiple operators, back-pressure has the etfect that all operators slow down to m
e processing speed of the slowest consumer.

atch

* |f the bottleneck operator is far down the dataflow graph, back-pressure propagates to

upstream operators, eventually reaching the data stream sources.

* Jo ensure no data loss, a persistent input message queue, such as Kafka, and enough
storage Is required.

back-pressure
target: 40 rec/s

°_ o

5 ep @ Vasiiki Kalavri | Boston

University 2020

Source

Source

g Streaming job

>

Streaming job

22

Sink

Sink

69 & \asliki Kalawr | Boston University 2020

1111 1111
Source * > Sink

U L1
Source * > Sink

Adjust processing rate of all
Durably bufter

operators to that of the
slowest part of the pipeline

1111
source |11 - ik

6p @ Vasiliki Kalavr | Boston University 2020

events In a channel
Or source

22

IIAII

1

2

A enters the system The result Is

The buffer is

and IS processed b iali |
o Y serialized into an shippad to Task 2

laskil output buffer

Progress is controlled though buffer availability

 Each produced and consumed stream have managed bufter pools
with bounded capacity.

* A buffer pool is a set of buffers which are recycled after they have
been consumed and can be re-used.

- 69 O& Vasiiki Kalawr | Boston University 2020

Rate adjustment

Local exchange: It both producer and consumer run on the same node the
buffer is recycled as soon as it is consumed.

* [he producer slows down according to the rate the consumer recycles
buttfers.

Remote exchange: |f tasks run on different worker nodes, the buffer can be
recycled as soon as it i1s on the TCP channel.

* |f there is no buffer on the consumer side, reading from the TCP connection
IS Interrupted.

* [he producer uses a threshold to control how much data is in-flight.
 [he producer is slowed down if it cannot put new data on the wire.

” eY @ Vasiiki Kalavr | Boston University 2020

Remarks on bufter-based rate control

o SiImple mechanism:the buffer occupancy controls the data rate
automatically.

 [The maximum throughput is limited by the processing rate of the slowest
task.

* Parallel tasks are connected via virtual channels multiplexed over TCP
connections:

* |n the presence of skew, a single overload channel can cause the slowdown of the
entire dataflow... can we do better?

- eY @ Vasiiki Kalavr | Boston University 2020

Credit-based flow control

» Credit-based flow control (CFC) is a link-by-link, per virtual channel
congestion control technique used in ATM network switches.

* Jo exchange data through an ATM network, each pair of endpoints first
needs to establish a virtual circuit (VC) or connection.

 CFC uses a credit system to signal the availability of bufter space from
recelvers to senders.

e 6@ Vasiiki Kaavr | Boston University 2020

* Senders maintain a credit balance for all their receivers and receivers regularly
send notifications upstream containing their number of available credits.

* One credit corresponds to some amount of buffer space so that a sender can
know how much data they can afford to forward downstream.

e @ Vaslki Kalavri | Boston University 2020

27

Credit-based flow control

This classic networking technigue turns out to be very useful for load
management in modern, highly-parallel stream processors and Is
implemented in Apache Flink.

Each task informs its senders of its buffer availability via credit
messages.

This way, senders always know whether receivers have the required
capacity to handle data messages.

When the credit of a receiver drops to zero (or a specified threshold),
pbackpressure appears on its virtual channel.

e 6@ Vasiiki Kaavr | Boston University 2020

Remarks on CFC

Bakcpressure is inflicted on pairs of communicating tasks only
e |t does not interfere with other tasks sharing the same TCP connection.

CFC maximizes network utilization and prevents faults caused by high congestion.

In the presence of bursty traftic, CFC causes backpressure to build up fast and
propagate along congested VCs to their sources which can be throttled.

Essentially, CFC allows blocking excess traffic outside the network to protect it.

 Thisis crucial in the presence of data skew where a single overloaded task could otherwise
block the flow of data to all other downstream operator instances.

On the downside, the additional credit announcement messages might increase
end-to-end latency.

- eY @ Vasiiki Kalavr | Boston University 2020

| ecture references

Nesime Tatbul, Ugur Cetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stonebraker. Load
shedding in a data stream manager. (VLDB '03)

N. Tatbul and S. Zdonik. Window-aware load shedding for aggregation queries over data
streams. (VLDB’'06)

N. Tatbul, U. Cetintemel, and S. Zdonik. Staying fit: Efficient load shedding techniques for
distributed stream processing. (VLDB'07)

N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. Concept-driven load shedding: Reducing
size and error of voluminous and variable data streams. (IEEE Big Data '18)

H. T. Kung,

. Blackwell, and A. Chapman. Credit-based flow control for atm networks: Credit

update protocol, adaptive credit allocation and statistical multiplexing. (ACM SGCOMM'94).

https://www.ververica.com/blog/how-flink-handles-backpressure

https://tlink.apache.org/2019/06/05/flink-network-stack.html

- 6@ Vasiiki Kaavr | Boston University 2020

https://www.ververica.com/blog/how-flink-handles-backpressure
https://flink.apache.org/2019/06/05/flink-network-stack.html

