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• Costs of streaming operator execution 
• state, parallelism, selectivity 

• Dataflow optimizations 
• plan translation alternatives 

• Runtime optimizations 
• load management, scheduling, state management 

• Optimization semantics, correctness, profitability

Topics covered in this lecture
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Revisiting the basics

3

source
sink

input port output port

dataflow graph
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Revisiting the basics

4

Dataflow graph
• operators are nodes, data channels are 

edges 
• channels have FIFO semantics 
• streams of data elements flow 

continuously along edges 
Operators

• receive one or more input streams 
• perform tuple-at-a-time, window, logic, 

pattern matching transformations 
• output one or more streams of possibly 

different type

A series of transformations 
on streams in 

Stream SQL, Scala, Python, 
Rust, Java…
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Logic

State

<k, v> <#Brexit, 521> 

<#WorldCup, 480> 

<#StarWars, 300>

<#Brexit>

<#Brexit, 521>

Stateful operators

5

• Stateful operators maintain 
state that reflect part of the 
stream history they have seen 

• windows, continuous aggregations, 
distinct… 

• State is commonly partitioned 
by key 

• State can be cleared based on 
watermarks or punctuations 

• window fires, post becomes inactive
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Operator selectivity

6

• The number of output elements produced per number of input elements 
• a map operator has a selectivity of 1, i.e. it produces one output element 

for each input element it processes 
• an operator that tokenizes sentences into words has selectivity > 1 
• a filter operator typically has selectivity < 1

Is selectivity always known at development time?
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Types of Parallelism
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BA

C

A
B

D

A

A
B

split

Pipeline: A || B

Task: B || C

Data: A || A
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Distributed execution in Flink
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Identify the most efficient way to execute a query

• There may exist several ways to execute a computation 
• query plans, e.g. order of operators 
• scheduling and placement decisions 
• different algorithms, e.g. hash-based vs. broadcast join 

• What does performance depend on? 
• input data, intermediate data 
• operator properties 

• How can we estimate the cost of different strategies? 
• before execution or during runtime

Query optimization (I)
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Optimization strategies 
• enumerate equivalent execution plans 
• minimize intermediate data and 

communication 

Alternatives 
• data structures 
• sorting vs hashing 
• indexing, pre-fetching 
• minimize disk access 
• scheduling

Objectives 
• optimize resource utilization or minimize 

resources 
• decrease latency, increase throughput 
• minimize monetary costs (if running in the 

cloud) 

Query optimization (II)
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Cost-based optimization

11

Parsed program 
representation

Optimizer

statistics

input

plan A plan B

output

Lowest-cost plan
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• What does efficient mean in the context of streaming? 
• queries run continuously 
• streams are unbounded 

• In traditional ad-hoc database queries, the query plan is generated on-
the-fly. Different plans can be used for two consecutive executions of the 
same query. 

• A streaming dataflow is generated once and then scheduled for execution. 
• Changing execution strategy while the query is running might be 

impractical. 
• state accumulation and re-partitioning 
• high-availability and low latency requirements 
• scheduling overhead

Challenges in streaming optimization
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• Profitability: under what conditions does the optimization improve 
performance? 

• can the decision be automatic? 

• Safety: under what conditions does the optimization preserve 
correctness? 

• maintain state semantics 
• maintain result and selectivity semantics 

• Dynamism: can the optimization be applied during runtime or does it 
have to be applied statically?

When to optimize?
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Catalog of 
Optimizations

14
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Safety 

• Attribute availability: the set of attributes B reads from must be disjoint from 
the set of attributes A writes to. 

• Commutativity: the results of applying A and then B must be the same as 
the result of applying B and then A. 

• holds if both operators are stateless

Operator re-ordering
BA AB

Move selective operators upstream to filter data early



🤧😷🤒 Vasiliki Kalavri | Boston University 202016

Profitability 
• Selectivity of A = 0.5 
• Profitable when selectivity of B < 0.5 

Operator re-ordering
BA AB
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• A static graph transformation 
that enables re-ordering at 
runtime 

• It dynamically routes data after 
measuring which ordering is the 
most profitable

Dynamic re-ordering with Eddy

BA DC

Eddy

C D

A B
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Safety 
• attribute availability: the set of attributes B reads from must be disjoint from the set of attributes A writes to. 
• commutativity: the results of applying A and then B must be the same as the result of applying B and then A. 

• holds if both operators are stateless

Re-ordering split and merge

splitmerge
mergesplit

mergesplit

When might this be beneficial?
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• Use equivalence transformation rules if the language allows 
• selection operations are commutative 

• theta-join operations are commutative 

• natural joins are associative 

• Move projections early to reduce data item size 

• Pick join orderings to minimize the size of intermediate results 
• execute selective joins first => follow-up joins will have less work to do

Algebraic re-orderings
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Safety 
• Ensure same algorithm: the redundant operators must perform an equivalent computation 
• Ensure mergeable state: even a simple counter might differ on a combined stream vs. on 

separate streams

Redundancy elimination

Eliminate redundant operations, aka subgraph sharing

B

A
B C

D

A B
C

D
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B

21

Profitability 
• Running two applications together on a 

single core, one with operators B and 
C, the other with operators B and D.

Redundancy elimination

B

A
B C

D

A B
C

D
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• Multi-tenancy 
• in streaming systems that build one dataflow graph for several queries 
• when applications analyze data streams from a small set of sources 

• Operator elimination 
• remove a no-op, e.g. a projection that keeps all attributes 
• remove idempotent operations, e.g. two selections on the same predicate 
• remove a dead subgraph, i.e. one that never produces output

Redundancy elimination variations

How can no-op or idempotent operators appear in an application?
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Ensure the combination of A1, A2 is 
equivalent to A: Given a stream s, make sure 
A2(A1(s)) = A(s), e.g., 

• if A is a selection operator and the selection 
predicate uses logical conjunction 

• if A is a projection on multiple attributes 
• if A is an idempotent aggregation

Operator separation
A A2A1

Separate operators into smaller computational steps

• beneficial if it enables other 
optimizations, e.g. re-ordering 

• if the pipeline parallelism pays off

Safety Profitability
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• Cost of Merge = 0.5 
• Cost of A = 0.5 
• Splitting A allows a pre-aggregation 

similar to what combiners do in 
MapReduce

Operator separation

merge

X merge A

AX merge

A1 merge A2

A2A1

X

X
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map(String key, String value): 
  // key: document name 
  // value: document contents 
    for each URL u in value: 

    EmitIntermediate(u, "1"); 

reduce(String key, Iterator values): 
  // key: a URL 
  // values: a list of counts 
    int result = 0; 
    for each v in values: 

    result += ParseInt(v); 

    Emit(key, AsString(result));

MapReduce combiners example: 
URL access frequency

(k2, list(v2)) → list(v2)

(k1, v1) → list(k2, v2)

map()

reduce()

25
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MapReduce combiners example: 
URL access frequency

26

map()

reduce()

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11; 
Linux i686) AppleWebKit/537.22 
(KHTML, like Gecko) Ubuntu 
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset: 
ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11; 
Linux i686) AppleWebKit/537.22 
(KHTML, like Gecko) Ubuntu 
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset: 
ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11; 
Linux i686) AppleWebKit/537.22 
(KHTML, like Gecko) Ubuntu 
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset: 
ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11; 
Linux i686) AppleWebKit/537.22 
(KHTML, like Gecko) Ubuntu 
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset: 
ISO-8859-1,utf-8;q=0.7,*;q=0.3

www.google.be, 1 
maps.google.com, 1 
maps.google.com, 1

www.google.be, 2
www.wikipedia.org, 5

maps.google.com, 3

map()

map()

map()

www.wikipedia.org, 1 
www.wikipedia.org, 1

www.wikipedia.org, 1 
www.wikipedia.org, 1 
www.wikipedia.org, 1

reduce()

www.google.be, 1 
maps.google.com, 1

https://www.google.be/
https://www.google.be/
https://maps.google.com/
http://maps.google.com
http://www.google.be
http://www.wikipedia.org
http://maps.google.com
http://www.wikipedia.org
http://www.wikipedia.org
http://www.wikipedia.org
http://www.wikipedia.org
http://www.wikipedia.org
http://www.google.be
http://maps.google.com
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MapReduce combiners example: 
URL access frequency

27

map()

reduce()

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11; 
Linux i686) AppleWebKit/537.22 
(KHTML, like Gecko) Ubuntu 
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset: 
ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11; 
Linux i686) AppleWebKit/537.22 
(KHTML, like Gecko) Ubuntu 
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset: 
ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11; 
Linux i686) AppleWebKit/537.22 
(KHTML, like Gecko) Ubuntu 
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset: 
ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11; 
Linux i686) AppleWebKit/537.22 
(KHTML, like Gecko) Ubuntu 
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset: 
ISO-8859-1,utf-8;q=0.7,*;q=0.3

www.google.be, 1 
maps.google.com, 2

www.google.be, 2
www.wikipedia.org, 5

maps.google.com, 3

map()

map()

map()

www.wikipedia.org, 2

www.wikipedia.org, 3

reduce()

www.google.be, 1 
maps.google.com, 1

https://www.google.be/
https://www.google.be/
https://maps.google.com/
http://www.google.be
http://www.wikipedia.org
http://maps.google.com
http://www.wikipedia.org
http://www.wikipedia.org
http://www.google.be
http://maps.google.com
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Safety 
• Ensure resource kinds: all resources required by a fused operator should remain available. 
• Ensure resource amounts: the total amount of resources required by the fused operator must be 

available on a single host. 
• Avoid infinite recursion: caution if there exist cycles in the stream graph.

Operator fusion
A

Avoid the overhead of serialization and transport

BA B
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• removes pipeline parallelism but saves 
communication and serialization cost  

• if operators are separate, throughput is 
bounded by either communication or 
processing cost 

• if fused, throughput is determined by 
operator cost only

Operator fusion
ABA B

Profitability
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• Non-fused operators can run on different threads 

• The optimizer can interact with the scheduler and fuse operators 
according to the number of available cores / threads 

• Fused operators can share the address space but use separate threads 
of control 

• avoid communication cost without losing pipeline parallelism 
• use a shared buffer for communication 

• Fused filters / projections at the source can significantly reduce I/O and 
intermediate results size

Synergies with scheduling and other optimizations
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Task chaining: Fusion in Flink

31

StreamExecutionEnvironment
.disableOperatorChaining()

val input: DataStream[X] = ...
val result: DataStream[Y] = input
.filter(new Filter1())
.map(new Map1())
// disable chaining for Map2
.map(new Map2()).disableChaining()
.filter(new Filter2())
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Safety 
• Ensure partitioned state: each parallel operator maintains disjoint state based on a key 

attribute 
• Ensure ordering constraints: if downstream operator expects elements in a particular 

order, merging should handle that 
• Avoid deadlocks: if split cannot push data because one channel is full and merge cannot 

receive data because another channel is empty

Operator fission

Data parallelism, replication

A

A

Asplit merge
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• if operator is costly enough to bring 
benefit when parallelized 

• split incurs a routing overhead 

• merge might incur overhead if ordering 
is required 

• p/s/o: parallel/sequential/overhead

Operator fission
A

A

Asplit merge

Profitability
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• Fission might be preferable to pipeline and task parallelism because it 
balances load more evenly 

• Data-parallel streaming languages enable fission by construction 

• Elastic scaling techniques enable dynamic operator fission by adjusting 
the number of parallel operator instances according to data rates 

• straight-forward for stateless operators, non-trivial for stateful

Variations and dynamism
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Safety 
• Ensure resource availability: the host must have enough resources for all assigned operators 
• Ensure security constraints: what are the trusted hosts for each operator? 
• Ensure state migration: if placement is dynamic and the operator is stateful, its state must be 

moved in a consistent manner

Operator placement

Assignment to hosts, colocation

D

A B C

E D

A B C

E
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• Trade communication cost 
against resource utilization 

• Operators on the same host 
compete for resources, e.g. 
memory and CPU

Operator placement

D

A B C

E D

A B C

E

Profitability
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• A TaskManager can execute several tasks at the same time. 
• It is statically configured with a certain number of processing slots that 

defines the maximum number of concurrent tasks it can execute. 
• A processing slot can execute one slice of an application, i.e. one 

parallel task of each operator of the application.

Operator placement in Flink
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Safety 
• Avoid starvation: every data item is eventually processed 
• Ensure each worker is qualified: if load balancing is applied after fission, each instance must 

be capable of processing each item and have access to necessary state
• Establish placement safety: if load balancing while performing operator placement

Load balancing

Distribute workload evenly across resources

A2

A1split

A2

A1split
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• If it compensates for skew, e.g. 
when there exist popular keys 

• if there is skew, throughput is 
bounded by the instance that 
receives the highest load

Load balancing

Profitability

A2

A1split

A2

A1split
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Safety 
• Ensure state visibility: operators sharing state are commonly fused and placed on the same 

host.
• Avoid race conditions: either ensure the data is immutable or synchronize access to state. 
• Manage memory safely: reclaiming and growing without bounds.

State sharing

Avoid unnecessary data copies

BA ΒΑ
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• it reduces stalls due to cache 
misses or disk I/O 

• fixed number of random state 
accesses, 32K L1 cache 

• the throughput of the non-shared 
version degrades first

State sharing
BA ΒΑ

Profitability
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Safety 
• Avoid deadlocks: if the dataflow graph is cyclic or if the batched operator shares a lock with 

an upstream operator. 
• Satisfy deadlines: for applications with real-time constraints or QoS latency constraints.

Batching

Process multiple data elements in a single batch

A A’
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• Batching trades throughput for latency 
• It improves throughput by amortizing 

operator firing and communication costs 
over more data items 

• Batching hurts latency as events can 
only be processed once the entire batch 
is complete

Batching

Profitability

A A’



Spark Streaming
• Treat streaming computation as a series of deterministic batch 

computations on small time intervals

• Keep intermediate state in memory

• Use Spark's RDDs instead of replication 

• Parallel recovery mechanism in case of failures

44

input stream time-based micro-batches



D-Streams
• During an interval, input data received is stored using RDDs

• A D-Stream is a group of such RDDs which can be processed using common operators

45



Example

• pageViews is a D-Stream grouped into 1s intervals 

• ones is a (URL, 1) D-Stream

46

pageViews = readStream("http://...", "1s") 

ones = pageViews.map(event => (event.url, 1) 

counts = ones.runningReduce((a, b) => a + b)
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Streaming as a series of batch jobs



• the maximum every 100 events? 

48

t t+1 t+3 t+4 t+5 t+6 t+7t+2

3 events4 events 2 events?

How would you compute…



• the maximum every 100 events? 
• clicks per user session? 

49

t t+1 t+3 t+4 t+5 t+6 t+7t+2

logged in
logged out

How would you compute…



• the maximum every 100 events? 
• clicks per user session? 
• faster than the batch size? 
• alerts when patterns occur?

50

t t+1 t+3 t+4 t+5 t+6 t+7t+2

How would you compute…
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• TaskManagers have a pool of network 
buffers to send and receive data. 

• If the sender and receiver run in 
separate processes, they 
communicate via permanent TCP 
connections. 

• If they run in the same process, the 
sender task serializes the outgoing 
records into a byte buffer. 

• A TaskManager needs one dedicated 
network buffer for each receiving task 
that any of its tasks need to send data 
to.

Batching in Apache Flink

• The TaskManagers ship data from sending 
tasks to receiving tasks. 

• The network component of a TaskManager 
collects records in buffers before they are 
shipped, i.e., records are not shipped one 
by one but batched.
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Interacting optimizations
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• Martin Hirzel et. al. A Catalog of Stream Processing 
Optimizations. (ACM Computing Surveys 2014). 

• Ron Avnur and Joseph M. Hellerstein. Eddies: continuously adaptive 
query processing. (SIGMOD 2000). 

• Matei Zaharia et. al. Discretized streams: fault-tolerant streaming 
computation at scale (SOSP ’13). 

• Fabian Hueske, and Vasiliki Kalavri. Stream Processing with Apache 
Flink. (O’Reilly Media ’19).
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• Peter R. Pietzuch et. al. Network-Aware Operator Placement for Stream-Processing Systems. ICDE 2006. 
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• Load balancing and skew mitigation 
• Muhammad Anis Uddin Nasir et. al. The power of both choices: Practical load balancing for distributed stream 

processing engines. ICDE 2015. 
• Nikos R. Katsipoulakis et. al. A holistic view of stream partitioning costs. VLDB 2017. 

• Rate-based optimization 
• Statis Viglas and Jeffrey Naughton. Rate-based Query Optimization for Streaming Information Sources. SIGMOD 

2002.

Further reading

https://dblp.uni-trier.de/db/conf/icde/icde2006.html#PietzuchLSRWS06
https://dblp.uni-trier.de/db/conf/vldb/vldb2003.html#CarneyCZRCS03
https://dblp.uni-trier.de/db/conf/icde/icde2015.html#NasirMGKS15

