CS 591 K1:

Data Stream Processing and Analytics
Spring 2020

4/14. Stream processing optimizations

Vasiliki (Vasia) Kalavri
vkalavri@bu.edu

e @ Vasiiki Kalavr | Boston University 2020

mailto:vkalavri@bu.edu

lopics covered In this lecture

Costs of streaming operator execution

e state, parallelism, selectivity

Dataflow optimizations

* plan translation alternatives

Runtime optimizations

* |oad management, scheduling, state management

Optimization semantics, correctness, profitability

e @ Vaslki Kalavri | Boston University 2020

Revisiting the basics

dataflow graph

input IQ__KOrt output port

A K
source) \

N

e @ Vasiiki Kalavr | Boston University 2020

Revisiting the basics

A series of transformations Dataflow graph

on streams In » operators are nodes, data channels are
Stream SQL, Scala, Python, edges

Rust, Java... e channels have FIFO semantics

e streams of data elements flow
continuously along edges

2

Operators
/j i g I\ | .
J '\ e receive one or more input streams
y e pt e perform tuple-at-a-time, window, logic,
N Ve pattern matching transtormations
\ /H a3 o oggput one or more streams of possibly
different type

e @ Vaslki Kalavri | Boston University 2020

Stateful operators

State

<k, v> <#Brexit, 521> | |
<#WorldCup, 4805 » Stateful operators maintain
r ') <#StarWars, 300> state that retlect part of the
s & stream history they have seen
—@—» logic =0 —@—» <#Brexit, 521> * windows, continuous aggregations,
distinct. ..
e State is commonly partitioned
a . I\ by key
N S
/ N e State can be cleared based on
") watermarks or punctuations
1 ¥ / / e window fires, post becomes inactive
—0—1

e @ Vasiiki Kalavr | Boston University 2020

Operator selectivity

 The number of output elements produced per number of input elements

e a map operator has a selectivity of 1, i.e. it produces one output element
for each input element it processes

e an operator that tokenizes sentences into words has selectivity > 1
o a filter operator typically has selectivity < 1

* Is selectivity always known at development time?

6@ Vasiiki Kaavr | Boston University 2020

Types of Parallelism

Pipeline: A || B — A —3' B —

3
Task: B || C T T, ’
\C/
split __» A
Data:AHA -——>|:\ \B
\A/

e @ Vaslki Kalavri | Boston University 2020

Distributed execution In Flink

(Worker) (Worker)

Task Task Task Task Task Task
Slot Slot Slot Slot Slot Slot
x I/O M : /O Manager

Viarmnryv R I Manamnaor Mamanryv %
Memol V & 1/0 Mahagel iemory

Network Manager

ctor System

Flink Program]
,"'Deploy/Stop/
Program ! / Cancel Tasks
Dataflow / 7
V" / Trigger

Optimizer / /' Checkpoints

Graph Builder 4

Dataflow graph

(Master / YARN Application Master)

E9O@ Vasiiki Kalavri | Boston University 2020

Query optimization (I)

Identify the most efficient way to execute a query

* [here may exist several ways to execute a computation

e query plans, e.g. order of operators
 scheduling and placement decisions

e different algorithms, e.g. hash-based vs. broadcast join

 \What does performance depend on?

 |nput data, intermediate data

e Operator properties

 How can we estimate the cost of different strategies”

* before execution or during runtime

e @ Vasiiki Kalavr | Boston University 2020

Query optimization (I

Optimization strategies

e enumerate equivalent execution plans

inimize | - iectiv
* minimize intermediate data and Objectives
communication e optimize resource utilization or minimize
resources

Alternatives .
* decrease latency, increase throughput

e data structures L . o
| | * minimize monetary costs (if running in the
* sorting vs hashing cloud)
e Indexing, pre-fetching
e minimize disk access

* scheduling

10 e @ Vaslki Kalavri | Boston University 2020

Cost-based optimization

Parsed program
representation

N
| >

plan A

S\

INput

|

plan B

A

Lowest-cost plan

Optimizer ———

output

|

b

statistics i I] I

11

e @ Vaslki Kalavri | Boston University 2020

Challenges in streaming optimization

What does efficient mean in the context of streaming”

* Queries run continuously
e gstreams are unbounded

In traditional ad-hoc database queries, the query plan is generated on-
the-fly. Different plans can be used for two consecutive executions of the
same query.

A streaming dataflow is generated once and then scheduled for execution.

Changing execution strategy while the query is running might be
impractical.

e state accumulation and re-partitioning

* high-avallability and low latency requirements
e scheduling overhead

15 e @ Vaslki Kalavri | Boston University 2020

When to optimize”

* Profitability: under what conditions does the optimization improve
performance”?

e can the decision be automatic?

o Safety: under what conditions does the optimization preserve
correctness?

e maintain state semantics

 maintain result and selectivity semantics

 Dynamism: can the optimization be applied during runtime or does it
have to be applied statically”

13 e @ Vaslki Kalavri | Boston University 2020

Catalog of
Optimizations

e @ Vasiiki Kalavr | Boston University 2020

Operator re-ordering

> A —m B

- B

Move selective operators upstream to filter data early

» B — A

Safety

* Attribute availability: the set of attributes B reads from must be disjoint from
the set of attributes A writes to.

 Commutativity: the results of applying A and then B must be the same as
the result of applying B and then A.

* holds if both operators are stateless

15 e @ Vaslki Kalavri | Boston University 2020

Operator re-ordering

- B

Selection Reordering

= 2.0 - —Not reordered
Profitability g 19 7=~ ~"Reordered
o Selectivity of A =0.5 é ;(5) - - T
* Profitable when selectivity of B < 0.5 " 0:0 | | | |

0.00 025 050 0.7 1.00
Selectivity of B

16 e @ Vaslki Kalavri | Boston University 2020

Dynamic re-ordering with £dady

* A static graph transformation
that enables re-ordering at
runtime

e [t dynamically routes data after
. measuring which ordering Is the
most profitable

17 6@ Vasiiki Kaavr | Boston University 2020

Re-ordering split and merge

\ of — splt —> merge ——mMm8
/ merge —> split < ‘ ><

» split ——> merge ——

Safety

e attribute availability: the set of attributes B reads from must be disjoint from the set of attributes A writes to.

 commutativity: the results of applying A and then B must be the same as the result of applying B and then A.
* holds if both operators are stateless

" When might this be beneficial?

18

e @ Vaslki Kalavri | Boston University 2020

Algebraic re-orderings

* Use equivalence transformation rules it the language allows

e selection operations are commutative
e theta-join operations are commutative

e natural joins are associative

 Move projections early to reduce data item size

* Pick join orderings to minimize the size of intermediate results

* execute selective joins first => follow-up joins will have less work to do

e @ Vaslki Kalavri | Boston University 2020

Redundancy elimination

5 — C — C —
>A/

~

3 —l :) —p D —

Eliminate redundant operations, aka subgraph sharing

Safety

- Ensure same algorithm: the redundant operators must perform an equivalent computation

- Ensure mergeable state: even a simple counter might differ on a combined stream vs. on
separate streams

- eY @ Vasiiki Kalavr | Boston University 2020

Redundancy elimination

3 — C — C —
/V

> A

_—
~

—
(-

Profitability

* Running two applications together on a — Not eliminated

Throughput
-
o
l

single core, one with operators B and 0.0 ~~"Eliminated , ,
C, the other with operators B and D. 000 025 050 075 100
Fraction of cost in shared subgraph
(operator B)

5 e @ Vaslki Kalavri | Boston University 2020

Redundancy elimination variations

* Multi-tenancy

* n streaming systems that build one dataflow graph for several queries

 when applications analyze data streams from a small set of sources

e Operator elimination

* remove a no-op, €.g. a projection that keeps all attributes
* remove idempotent operations, e.g. two selections on the same predicate
 remove a dead subgraph, i.e. one that never produces output

‘ How can no-op or idempotent operators appear in an application?

- 6@ Vasiiki Kaavr | Boston University 2020

Operator separation

» AT — Ao

- B

Separate operators into smaller computational steps

Safety Profitability
Ensure the combination of Ay, A2 IS L
equivalent to A: Given a stream s, make sure * Deneficial it it enables other
Ax(A1(s)) = A(s), e.g., optimizations, e.g. re-ordering
if A is a selection operator and the selection * If the pipeline parallelism pays off

predicate uses logical conjunction
if A'ls a projection on multiple attributes
if Ais an idempotent aggregation

- e @ Vasiiki Kalavr | Boston University 2020

Operator separation
-@- nerge — (A~
>‘, merge »‘—.

> X > merge

X

> X =+ merge

Separating Aggregation
- 3 - — Not separated
Cost of Merge = 0.5 é_ Y -~ -Separated
Costof A=0.5 % 1 \‘*\,_
Splitting A allows a pre-aggregation =
similar to what combiners do in 0 - ' 1 1 1 ' |
MapReduce 0.00 0.17 0.33 0.50 0.67 0.83 1.00

Selectivity of Aggregation

o e @ Vaslik Kalavri | Boston University 2020

MapReduce combiners example:
URL access frequency

map (String key, String value) :
// key: document name
// value: document contents
for each URL u in value:

EmitIntermediate (u, "1");

reduce (String key, Iterator values):
// key: a URL
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);

EFmit (key, AsString(result));

20

(kl, v1l) - list(k2, v2)

map()

\4

reduce()

(k2, list(v2)) — list (v2)

e @ Vaslki Kalavri | Boston University 2020

GET /dumprequest HTTP/1.1

Host: rve.org.uk

Connection: keep-alive

Accept: text/html,application/
xhtml+xml,application/
xml;g=0.9,*/*;9=0.8

User-Agent: Mozilla/5.0 (X11;
Linux i1686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;qg=0.8
Accept-Charset:
IS0-8859-1,utf-8;9=0.7,*;9=0.3

GET /dumprequest HTTP/1l.1

Host: rve.org.uk

Connection: keep-alive

Accept: text/html,application/
xhtml+xml,application/
xml;gq=0.9,*/*;g=0.8

User-Agent: Mozilla/5.0 (X11;
Linux i686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;g=0.8
Accept-Charset:
IS0-8859-1,utf-8;9=0.7,*;g=0.3

GET /dumprequest HTTP/1.1

Host: rve.org.uk

Connection: keep-alive

Accept: text/html,application/
xhtml+xml,application/
xml;g=0.9,*/*;9=0.8

User-Agent: Mozilla/5.0 (X11;
Linux i1686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;qg=0.8
Accept-Charset:
150-8859-1,utf-8;9=0.7,%;q=0.3

GET /dumprequest HTTP/1l.1

Host: rve.org.uk

Connection: keep-alive

Accept: text/html,application/
xhtml+xml, application/
xml;gq=0.9,*/*;g=0.8

User-Agent: Mozilla/5.0 (X11;
Linux i1686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;qg=0.8
Accept-Charset:
IS0-8859-1,utf-8;q=0.7,*;g=0.3

MapReduce combiners example:
URL access frequency

Wwww.google.be, 1

maps.google.com, 1

maps.google.com, 1

www.wikipedia.org, 1
www.wikipedia.org, 1
www.wikipedia.org, 1

. Www.google.be, 2

www.wikipedia.org, 1
www.wikipedia.org, 1

WwWWw.google.be, 1
maps.google.com, 1

20

www.wikipedia.org, 5

maps.google.com, 3

6@ Vasiliki Kalawr | Boston University 2020

https://www.google.be/
https://www.google.be/
https://maps.google.com/
http://maps.google.com
http://www.google.be
http://www.wikipedia.org
http://maps.google.com
http://www.wikipedia.org
http://www.wikipedia.org
http://www.wikipedia.org
http://www.wikipedia.org
http://www.wikipedia.org
http://www.google.be
http://maps.google.com

GET /dumprequest HTTP/1.1

Host: rve.org.uk

Connection: keep-alive

Accept: text/html,application/
xhtml+xml,application/
xml;g=0.9,*/*;9=0.8

User-Agent: Mozilla/5.0 (X11;
Linux i1686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;qg=0.8
Accept-Charset:
IS0-8859-1,utf-8;9=0.7,*;9=0.3

GET /dumprequest HTTP/1l.1

Host: rve.org.uk

Connection: keep-alive

Accept: text/html,application/
xhtml+xml,application/
xml;gq=0.9,*/*;g=0.8

User-Agent: Mozilla/5.0 (X11;
Linux i686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;g=0.8
Accept-Charset:
IS0-8859-1,utf-8;9=0.7,*;g=0.3

GET /dumprequest HTTP/1.1

Host: rve.org.uk

Connection: keep-alive

Accept: text/html,application/
xhtml+xml,application/
xml;g=0.9,*/*;9=0.8

User-Agent: Mozilla/5.0 (X11;
Linux i1686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;qg=0.8
Accept-Charset:
IS0-8859-1,utf-8;9=0.7,*;9=0.3

GET /dumprequest HTTP/1l.1

Host: rve.org.uk

Connection: keep-alive

Accept: text/html,application/
xhtml+xml,application/
xml;gq=0.9,*/*;g=0.8

User-Agent: Mozilla/5.0 (X11;
Linux i1686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;qg=0.8
Accept-Charset:
IS0-8859-1,utf-8;9=0.7,*;g=0.3

MapReduce combiners example:

URL access frequency

www.google.be, 1
maps.google.com, 2

. Www.google.be, 2

www.wikipedia.org, 5

www.wikipedia.org, 2

WwWWw.google.be, 1
maps.google.com, 1

27

maps.google.com, 3

6@ Vasiliki Kalawr | Boston University 2020

https://www.google.be/
https://www.google.be/
https://maps.google.com/
http://www.google.be
http://www.wikipedia.org
http://maps.google.com
http://www.wikipedia.org
http://www.wikipedia.org
http://www.google.be
http://maps.google.com

Operator fusion

- B

Avoid the overhead of serialization and transport

Safety

- Ensure resource kinds: all resources required by a fused operator should remain available.

- Ensure resource amounts: the total amount of resources required by the tused operator must be
avallable on a single host.

- Avoid infinite recursion: caution if there exist cycles in the stream graph.

- e @ Vasiiki Kalavr | Boston University 2020

Operator fusion

Profitability

* removes pipeline paral
communication and se

e |f operators are separate, throughput
bounded by either communication o

processing cost

e |f fused, throughput is determined by

operator cost only

elism but saves

rlalization cost

r

1S

- B

29

ut

Q.

Through

2.5
2.0

1.5
1.0
0.5
0.0

Fusion

—Not fused
‘ ---Fused

sss
m—
= -
---—--
—

0

1 2 3 4 S 6
Operator cost / communication cost

6@ Vasiiki Kaavr | Boston University 2020

Synergies with scheduling and other optimizations

Non-fused operators can run on different threads

The optimizer can interact with the scheduler and fuse operators
according to the number of available cores / threads

Fused operators can share the address space but use separate threads
of control

e avold communication cost without losing pipeline parallelism

e use a shared buffer for communication

Fused filters / projections at the source can significantly reduce 1/O and
iIntermediate results size

- eY @ Vasiiki Kalavr | Boston University 2020

lTask chalning: Fusion In Flink

De/Serialization

Thread

-

12

T

Thread

De/Serialization

M
Thread

|

Thread

’

De/Serialization

Thread

.

2 [l

T3.1

1.2

ne2
Thread T

2

ethod Method
Call Call

v

T[1-2-31.1 | Funcl

Func2 | Func3

T[1-2-3].2 | FuncT

1

Func2 | Func3

Thread Method Method

Gl Gl

132

Thread

De/Serialization

L

]
]

31

StreamExecutionEnvironment
.disableOperatorChaining()

val input: DataStream[X] =

val result: DataStream[Y] = input
.filter(new Filterl())
.map(new Mapl())
// disable chaining for Map2
.map(new Map2()).disableChaining()
.filter(new Filter2())

@ Vasiiki Kaawr | Boston University 2020

Operator fission

Data parallelism, replication

Safety

- Ensure partitioned state: each parallel operator maintains disjoint state based on a key
attribute

- Ensure ordering constraints: it downstream operator expects elements in a particular
order, merging should handle that

-+ Avoid deadlocks: if split cannot push data because one channel is full and merge cannot
recelve data because another channel is empty

- e @ Vasiiki Kalavr | Boston University 2020

Operator fission

split _,—~ A merge
» A > ‘ - - = § ~ B >
\ /
A
if operator is costly enough to bring 6 - —p;s;o = 1;(1);(1) ,,,,,
. . -5 __p s/o = e
benefit when parallelized % 4 { ~plso = 1/0/0 .
= S -
split incurs a routing overhead 221 7 =
==
O | I I | |

merge might incur overhead if ordering

s required 1 2 3 4 5 6
Number of Cores

p/s/o: parallel/sequential/overhead

- LY@ Vasiiki Kalavr | Boston University 2020

Variations and dynamism

* Fission might be preferable to pipeline and task parallelism because it
balances load more evenly

o Data-parallel streaming languages enable fission by construction

o Elastic scaling technigues enable dynamic operator fission by adjusting
the number of parallel operator instances according to data rates

e straight-forward for stateless operators, non-trivial for stateful

34 e @ Vasiiki Kalavr | Boston University 2020

A — B — C —

N

Assignment to hosts, colocation

Safety

- Ensure resource avalilability: the host must have enough resources for all assigned operators
- Ensure security constraints: what are the trusted hosts for each operator?

- Ensure state migration: if placement is dynamic and the operator is stateful, its state must be
moved In a consistent manner

- eY @ Vasiiki Kalavr | Boston University 2020

» A ——»

\

5 — C

/

Profitability

* [rade communication cost
against resource utilization

_>

e Operators on the same host

compete for resources, e.g.

memory and CPU

36

Placement

N
@)
|

—Not colocated
- --Colocated

[hroughput
N
o

O A
O © O
I
|
!
|
!
|
!
|
!
!
I
!
I
I
|
I
|
I
|
I
I
|
I
|

O
=

Communication cost

6@ Vasiiki Kaavr | Boston University 2020

Operator placement in Flink

JobGraph TaskManager1 TaskManager2

A laskManager can execute several tasks at the same time.

* |tis statically configured with a certain number of processing slots that
defines the maximum number of concurrent tasks it can execute.

* A processing slot can execute one slice of an application, i.e. one
parallel task of each operator of the application.

17 6@ Vasiiki Kaavr | Boston University 2020

|_oad palancing

Distribute workload evenly across resources

Safety

- Avoid starvation: every data item is eventually processed

- Ensure each worker is qualified: if load balancing is applied after fission, each instance must
be capable of processing each item and have access to necessary state

- Establish placement safety: if load balancing while performing operator placement

- eY @ Vasiiki Kalavr | Boston University 2020

|_oad palancing

.eoe i B ool
N
% %
Ao Ao
Profitabi\ity Load Balancing
40 —————— —— —-
e |f it compensates for skew, e.Q. ERTR . S —
. L
O -

when there exist popular keys 320 1— Balanced, 4 rephsas ’
| | | < 1.0 q---"Balanced, 3 replicas N
e |f there is skew, throughput is 00 J——Skewed, 4 replicas _ |
bounded by the instance that 0 20 40 60 80

Percent load on bottleneck replica

recelives the highest loaad

- LY@ Vasiiki Kalavr | Boston University 2020

State sharing

Avoid unnecessary data copies

Safety

- Ensure state visibility: operators sharing state are commonly fused and placed on the same
host.

- Avoid race conditions: either ensure the data is iImmutable or synchronize access to state.

- Manage memory safely: reclaiming and growing without bounds.

40 e @ Vasiiki Kalavr | Boston University 2020

State sharing

Profitability

e |t reduces stalls due to cache
misses or disk |/O

e fixed number of random state
accesses, 32K L1 cache

* the throughput of the non-shared
version degrades first

Throughput
O O O O —
N RO O

O
o

41

e

—Not shared
---Shared

1 I 1 1 1 1 1 I 1 1 I

— (N < 00O O N < 00 © (N <
— M O N 1O «— (N

— N 1O O

B —

State size in K

e @ Vaslki Kalavri | Boston University 2020

Batching

—eossflhee— W [euee

> A’

P-—

Process multiple aata elements in a single batch

Safety

-+ Avoid deadlocks: if the datatlow graph is cyclic or if the batched operator shares a lock with

an upstream operator.

- Satisfy deadlines: for applications with real-time constraints or QoS latency constraints.

42

6@ Vasiiki Kaavr | Boston University 2020

Profitability

o Batching trades throughput for latency

e |t Improves throug

operator firing anc

Nput

com

over more data ite

NS

Batching

—O—0-0-0r A -0-0— ‘ H A -
Batching
4 - 1
_--F
L 3 - -7
Oy amortizing T
. . 2 - = —3 - e~

munication costs _—

. L Throughput
---Latency

O I 1 1 1 | 1 1

e Batching hurts latency as events can
0e processed once the entire batch

only
IS complete

1 2 3

43

4 5 6 7 8 9 10
Batch size

e @ Vaslki Kalavri | Boston University 2020

Spark Streaming

Treat streaming computation as a series of deterministic batch
computations on small time intervals

Keep intermediate state in memory
Use Spark's RDDs instead of replication

Parallel recovery mechanism in case of failures

B {wnos} {omn}{ o]

INnput stream time-based micro-batches

44

D-Streams

* During an interval, input data received is stored using RDDs

A D-Stream is a group of such RDDs which can be processed using common operators

batch operation

t=1: |nput
|mmutable \ iImmutable

dataset dataset
[TJM [l /

\/’%\
(T T 1] (11T
MMDMDMDM 5 s (plsls

D Stream 1 D-Stream 2

)\

t=2:

Example

prageViews = readStream("http://...", "1ls")
ones = pageViews.map (event => (event.url, 1)
counts = ones.runningReduce((a, b) => a + Db)

 pageViews is a D-Stream grouped into 1s intervals

e onesisa (URL, 1) D-Stream

46

Streaming as a series of batch jobs

Spark Streaming
. streaming
divide data :
I\> stream into computations
. 4 hatch expressed using
Iive Input AIENES DStreams
data stream
batches generate
of input
data as RDD
RDDs transfor-
v mations
Spark (S A
< [Task Scheduler] (/ Spark batch jobs
to execute RDD
O
batchelf of [Memory Manager] — transformations
results

47

* How would you compute...

e the maximum every 100 events”

t t+1 t+2 t+3 t+4 t+5 t+0 t+7/

4 events 2 evenits? 3 events

48

* How would you compute...

e the maximum every 100 events”

* clicks per user session?

t t+1 t+2 t+3 t+4 t+5 t+0 t+7/

- g—— Iogged out
logged in

49

* How would you compute...

e the maximum every 100 events”
* clicks per user session?
e faster than the batch size”

e alerts when patterns occur?

t t+1 t+2 t+3 t+4 t+5 t+0 t+7/

50

atching In Apache rlink

TaskManager 1 TaskManager 2

ot 1.1 ot 1.2 ot 21 lot 22 * TaskManagers have a pool of network
Recelver1_| || [Receiver2 | [Receivers | | [Recever | buffers to send and receive data.

AP

Y
/\

.\

A

e |f the sender and receiver run In
separate processes, they

[M [
Gy

HEEE communicate via permanent TCP
—_— = connections.
* |t they run in the same process, the
 [The TaskManagers ship data from sending sender task serializes the outgoing
tasks to receiving tasks. records into a byte buffer.

* The network component of a TaskManager « A TaskManager needs one dedicated
collects records in buffers before they are network buffer for each receiving task
shipped, I.e., records are not shipped one that any of its tasks need to send data
by one but batched. to.

. e @ Vaslki Kalavri | Boston University 2020

INnteracting optimizations

Traditional compiler analyses

3

Operator separation

Operator reorderln T |
/ Algorithm selection

F|SS|on l

Redundancy elimination
Load shedding

PIacement—»Fusmn
Load balancing

State sharing Batching

\ /

Traditional compiler optimizations

6@ Vasiiki Kaavr | Boston University 2020

| ecture references

Martin Hirzel et. al. A Catalog of Stream Processing
Optimizations. (ACM Computing Surveys 2014).

Ron Avnur and Joseph M. Hellerstein. Eddies: continuously adaptive
query processing. (SIGMOD 2000).

Matel Zaharia et. al. Discretized streams: fault-tolerant streaming
computation at scale (SOSP '13).

Fabian Hueske, and Vasiliki Kalavri. Stream Processing with Apache
Flink. (O'Reilly Media '19).

. 6@ Vasiiki Kaavr | Boston University 2020

~Further reading

Re-ordering
» Shivnath Babu et. al. Adaptive Ordering of Pipelined Stream Filters. SIGMOD 2004.

Scheduling and placement
« Peter R. Pietzuch et. al. Network-Aware Operator Placement for Stream-Processing Systems. ICDE 2006.

» Brian Babcock et. al. Chain : Operator Scheduling for Memory Minimization in Data Stream
Systems. SIGMOD 2003.

* Donald Carney et. al. Operator Scheduling in a Data Stream Manager. VL.DB 2003.

. oad balancing and skew mitigation

« Muhammad Anis Uddin Nasir et. al. The power of both choices: Practical load balancing for distributed stream
processing engines. |[CDE 2015.

 Nikos R. Katsipoulakis et. al. A holistic view of stream partitioning costs. VL.DB 2017.

Rate-based optimization

o Statis Viglas and Jeffrey Naughton. Rate-based Query Optimization for Streaming Information Sources. SIGMOD
2002.

- eY @ Vasiiki Kalavr | Boston University 2020

https://dblp.uni-trier.de/db/conf/icde/icde2006.html#PietzuchLSRWS06
https://dblp.uni-trier.de/db/conf/vldb/vldb2003.html#CarneyCZRCS03
https://dblp.uni-trier.de/db/conf/icde/icde2015.html#NasirMGKS15

