CS 591 K1: **Data Stream Processing and Analytics** Spring 2020

4/14: Stream processing optimizations

Vasiliki (Vasia) Kalavri vkalavri@bu.edu

Topics covered in this lecture

- Costs of streaming operator execution
 - state, parallelism, selectivity
- Dataflow optimizations
 - plan translation alternatives
- Runtime optimizations
 - load management, scheduling, state management
- Optimization semantics, correctness, profitability

Revisiting the basics

A series of transformations on streams in Stream SQL, Scala, Python, Rust, Java...

Dataflow graph

- operators are nodes, data channels are edges
- channels have FIFO semantics
- streams of data elements flow continuously along edges

Operators

- receive one or more input streams
- perform tuple-at-a-time, window, logic, pattern matching transformations
- output one or more streams of possibly different type

Stateful operators

- Stateful operators maintain state that reflect part of the stream history they have seen
 - windows, continuous aggregations, \bullet distinct...
- State is commonly partitioned by key
- State can be cleared based on watermarks or punctuations
 - window fires, post becomes inactive

Operator selectivity

- The number of output elements produced per number of input elements
 - a map operator has a selectivity of 1, i.e. it produces one output element for each input element it processes
 - an operator that tokenizes sentences into words has selectivity > 1
 - a filter operator typically has selectivity < 1

Is selectivity always known at development time?

Pipeline: A || B

Task: B || C

Data: A || A

Distributed execution in Flink

(Master / YARN Application Master)

Query optimization (I)

Identify the most efficient way to execute a query

- There may exist several ways to execute a computation
 - query plans, e.g. order of operators
 - scheduling and placement decisions
 - different algorithms, e.g. hash-based vs. broadcast join
- What does performance depend on?
 - input data, intermediate data
 - operator properties
- How can we estimate the cost of different strategies?
 - before execution or during runtime

Query optimization (II)

Optimization strategies

- enumerate equivalent execution plans
- minimize intermediate data and \bullet communication

Alternatives

- data structures
- sorting vs hashing
- indexing, pre-fetching
- minimize disk access
- scheduling

Objectives

- optimize resource utilization or minimize resources
- decrease latency, increase throughput
- minimize monetary costs (if running in the cloud)

Cost-based optimization

representation

Challenges in streaming optimization

- What does *efficient* mean in the context of streaming?
 - queries run continuously
 - streams are unbounded
- same query.
- Changing execution strategy while the query is running might be impractical.
 - state accumulation and re-partitioning \bullet
 - high-availability and low latency requirements
 - scheduling overhead

 In traditional ad-hoc database queries, the query plan is generated onthe-fly. Different plans can be used for two consecutive executions of the

A streaming dataflow is generated once and then scheduled for execution.

When to optimize?

- **Profitability**: under what conditions does the optimization improve performance?
 - can the decision be automatic?
- **Safety**: under what conditions does the optimization preserve correctness?
 - maintain state semantics
 - maintain result and selectivity semantics
- have to be applied statically?

• **Dynamism:** can the optimization be applied during runtime or does it

Catalog of Optimizations

Move selective operators upstream to filter data early

Safety

- the set of attributes A writes to.
- the result of applying B and then A.
 - holds if both operators are stateless

• Attribute availability: the set of attributes B reads from must be disjoint from

Commutativity: the results of applying A and then B must be the same as

Profitability

- Selectivity of A = 0.5 \bullet
- Profitable when selectivity of B < 0.5 \bullet

Operator re-ordering

Dynamic re-ordering with Eddy

D

В

- A static graph transformation that enables re-ordering at runtime
- It dynamically routes data after measuring which ordering is the most profitable

Safety

- lacksquare
- **commutativity**: the results of applying A and then B must be the same as the result of applying B and then A. ullet
 - holds if both operators are stateless

attribute availability: the set of attributes B reads from must be disjoint from the set of attributes A writes to.

When might this be beneficial?

- Use equivalence transformation rules if the language allows
 - selection operations are commutative
 - theta-join operations are commutative
 - natural joins are associative
- Move projections early to reduce data item size
- Pick join orderings to minimize the size of intermediate results
 - execute selective joins first => follow-up joins will have less work to do

Algebraic re-orderings

Safety

- **Ensure same algorithm:** the redundant operators must perform an equivalent computation • **Ensure mergeable state:** even a simple counter might differ on a combined stream vs. on •
- separate streams

Eliminate redundant operations, aka subgraph sharing

Profitability

Running two applications together on a lacksquaresingle core, one with operators B and C, the other with operators B and D.

Redundancy elimination variations

- Multi-tenancy
 - in streaming systems that build one dataflow graph for several queries when applications analyze data streams from a small set of sources
 - lacksquare \bullet
- Operator elimination
 - remove a no-op, e.g. a projection that keeps all attributes
 - remove idempotent operations, e.g. two selections on the same predicate
 - remove a dead subgraph, i.e. one that never produces output \bullet

How can no-op or idempotent operators appear in an application?

Operator separation A_1 A A_2

Safety

Ensure the combination of A₁, A₂ is equivalent to A: Given a stream s, make sure $A_2(A_1(s)) = A(s), e.g.,$

- if the pipeline parallelism pays off if A is a selection operator and the selection predicate uses logical conjunction
- if A is a projection on multiple attributes
- if A is an idempotent aggregation

Separate operators into smaller computational steps

Profitability

beneficial if it enables other optimizations, e.g. re-ordering

- Cost of Merge = 0.5
- Cost of A = 0.5
- Splitting A allows a pre-aggregation • similar to what combiners do in MapReduce

MapReduce combiners example: URL access frequency

map(String key, String value): // key: document name // value: document contents for each URL u in value: EmitIntermediate(u, "1");

reduce(String key, Iterator values): // key: a URL // values: a list of counts int result = 0; for each v in values: result += ParseInt(v); Emit(key, AsString(result));

MapReduce combiners example: URL access frequency

GET /dumprequest HTTP/1.1 Host: rve.org.uk Connection: keep-alive Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25.0.1364.160 Chrome/ 25.0.1364.160 Safari/537.22 Referer: https://www.google.be/ Accept-Language: en-US, en; q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1 Host: rve.org.uk Connection: keep-alive Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25.0.1364.160 Chrome/ 25.0.1364.160 Safari/537.22 Referer: https://www.google.be/ Accept-Language: en-US, en; q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1 Host: rve.org.uk Connection: keep-alive Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25.0.1364.160 Chrome/ 25.0.1364.160 Safari/537.22 Referer: https://www.google.be/ Accept-Language: en-US, en; q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1 Host: rve.org.uk Connection: keep-alive Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25.0.1364.160 Chrome/ 25.0.1364.160 Safari/537.22 Referer: https://www.google.be/ Accept-Language: en-US, en; q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

www.google.be, 1 maps.google.com, ⁻ maps.google.com, ⁻ map()

map()

www.wikipedia.org, www.wikipedia.org, www.wikipedia.org,

map()

www.wikipedia.org, www.wikipedia.org,

map()

www.google.be, 1 maps.google.com, 1

MapReduce combiners example: URL access frequency

GET /dumprequest HTTP/1.1 Host: rve.org.uk Connection: keep-alive Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25.0.1364.160 Chrome/ 25.0.1364.160 Safari/537.22 Referer: https://www.google.be/ Accept-Language: en-US, en; q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1 Host: rve.org.uk Connection: keep-alive Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25.0.1364.160 Chrome/ 25.0.1364.160 Safari/537.22 Referer: https://www.google.be/ Accept-Language: en-US, en; q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1 Host: rve.org.uk Connection: keep-alive Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25.0.1364.160 Chrome/ 25.0.1364.160 Safari/537.22 Referer: https://www.google.be/ Accept-Language: en-US, en; q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1 Host: rve.org.uk Connection: keep-alive Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25.0.1364.160 Chrome/ 25.0.1364.160 Safari/537.22 Referer: https://www.google.be/ Accept-Language: en-US, en; q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

map() www.wikipedia.org, 2 map(

map()

www.google.be, 1

maps.google.com, 2

map()

www.wikipedia.org, 3

<u>www.google.be</u>, 1 maps.google.com, 1

Avoid the overhead of serialization and transport

Safety

- available on a single host.
- **Avoid infinite recursion:** caution if there exist cycles in the stream graph.

• Ensure resource kinds: all resources required by a fused operator should remain available.

Ensure resource amounts: the total amount of resources required by the fused operator must be

В A

Profitability

- removes pipeline parallelism but saves communication and serialization cost
- if operators are separate, throughput is bounded by either communication or processing cost
- if fused, throughput is determined by operator cost only

Synergies with scheduling and other optimizations

- Non-fused operators can run on different threads
- The optimizer can interact with the scheduler and fuse operators according to the number of available cores / threads
- Fused operators can share the address space but use separate threads of control
 - avoid communication cost without losing pipeline parallelism
 - use a shared buffer for communication
- intermediate results size

Fused filters / projections at the source can significantly reduce I/O and

Task chaining: Fusion in Flink

StreamExecutionEnvironment .disableOperatorChaining()

```
val input: DataStream[X] = ...
val result: DataStream[Y] = input
 .filter(new Filter1())
 .map(new Map1())
 // disable chaining for Map2
 .map(new Map2()).disableChaining()
 .filter(new Filter2())
```


Data parallelism, replication

Safety

- attribute
- order, merging should handle that
- receive data because another channel is empty

Ensure partitioned state: each parallel operator maintains disjoint state based on a key

Ensure ordering constraints: if downstream operator expects elements in a particular

Avoid deadlocks: if split cannot push data because one channel is full and merge cannot

Profitability

- if operator is costly enough to bring benefit when parallelized
- split incurs a routing overhead
- merge might incur overhead if ordering is required
- p/s/o: parallel/sequential/overhead

Variations and dynamism

- balances load more evenly
- Data-parallel streaming languages enable fission by construction
- the number of parallel operator instances according to data rates
 - straight-forward for stateless operators, non-trivial for stateful

Fission might be preferable to pipeline and task parallelism because it

• Elastic scaling techniques enable dynamic operator fission by adjusting

Safety

- •
- **Ensure security constraints**: what are the trusted hosts for each operator?
- moved in a consistent manner

Assignment to hosts, colocation

Ensure resource availability: the host must have enough resources for all assigned operators

Ensure state migration: if placement is dynamic and the operator is stateful, its state must be

Profitability

- Trade communication cost against resource utilization
- Operators on the same host compete for resources, e.g. memory and CPU

Operator placement В A

Operator placement in Flink

- A TaskManager can execute several tasks at the same time.
- It is statically configured with a certain number of **processing slots** that defines the maximum number of concurrent tasks it can execute.
- A processing slot can execute one slice of an application, i.e. one parallel task of each operator of the application.

Safety

- Avoid starvation: every data item is eventually processed
- be capable of processing each item and have access to necessary state
- Establish placement safety: if load balancing while performing operator placement

Distribute workload evenly across resources

• Ensure each worker is qualified: if load balancing is applied after fission, each instance must

Profitability

- If it compensates for skew, e.g. when there exist popular keys
- if there is skew, throughput is bounded by the instance that receives the highest load

Avoid unnecessary data copies

Safety

- host.
- •
- Manage memory safely: reclaiming and growing without bounds.

• Ensure state visibility: operators sharing state are commonly fused and placed on the same

Avoid race conditions: either ensure the data is immutable or synchronize access to state.

Profitability

- it reduces stalls due to cache misses or disk I/O
- fixed number of random state accesses, 32K L1 cache
- the throughput of the non-shared version degrades first

Safety

- Avoid deadlocks: if the dataflow graph is cyclic or if the batched operator shares a lock with • an upstream operator.
- **Satisfy deadlines:** for applications with real-time constraints or QoS latency constraints. •

Process multiple data elements in a single batch

Profitability

- Batching trades throughput for latency
- It improves throughput by amortizing operator firing and communication costs over more data items
- Batching hurts latency as events can only be processed once the entire batch is complete

Batching

Spark Streaming

- Treat streaming computation as a series of deterministic batch computations on small time intervals
- Keep intermediate state **in memory**
- Use Spark's **RDDs** instead of replication
- Parallel recovery mechanism in case of failures

time-based **micro-batches**

D-Streams

- During an *interval*, input data received is stored using *RDDs*
- A *D-Stream* is a group of such RDDs which can be processed using common operators

Example

- pageViews = readStream("http://...", "1s")
- ones = pageViews.map(event => (event.url, 1)
- counts = ones.runningReduce((a, b) => a + b)
 - pageViews is a D-Stream grouped into 1s intervals
 - ones is a (URL, 1) D-Stream

Streaming as a series of batch jobs

• the maximum every 100 events?

- the maximum every 100 events?
- clicks per user session?

- the maximum every 100 events?
- clicks per user session?
- faster than the batch size?
- alerts when patterns occur?

- The TaskManagers ship data from sending tasks to receiving tasks.
- The network component of a TaskManager collects records in buffers before they are shipped, i.e., records are not shipped one by one but batched.

Batching in Apache Flink

- If the sender and receiver run in separate processes, they communicate via permanent TCP connections.
- If they run in the same process, the sender task serializes the outgoing records into a byte buffer.
- A TaskManager needs one dedicated network buffer for each receiving task that any of its tasks need to send data to.

- Martin Hirzel et. al. A Catalog of Stream Processing **Optimizations**. (ACM Computing Surveys 2014).
- Ron Avnur and Joseph M. Hellerstein. Eddies: continuously adaptive query processing. (SIGMOD 2000).
- Matei Zaharia et. al. Discretized streams: fault-tolerant streaming computation at scale (SOSP '13).
- Fabian Hueske, and Vasiliki Kalavri. Stream Processing with Apache Flink. (O'Reilly Media '19).

Lecture references

Further reading

- Re-ordering
 - Shivnath Babu et. al. Adaptive Ordering of Pipelined Stream Filters. SIGMOD 2004. •
- Scheduling and placement
 - Peter R. Pietzuch et. al. Network-Aware Operator Placement for Stream-Processing Systems. ICDE 2006. Brian Babcock et. al. Chain : Operator Scheduling for Memory Minimization in Data Stream
 - Systems. SIGMOD 2003.
 - Donald Carney et. al. Operator Scheduling in a Data Stream Manager. VLDB 2003.
- Load balancing and skew mitigation
 - Muhammad Anis Uddin Nasir et. al. The power of both choices: Practical load balancing for distributed stream processing engines. ICDE 2015.
 - Nikos R. Katsipoulakis et. al. A holistic view of stream partitioning costs. VLDB 2017. \bullet
- Rate-based optimization
 - Statis Viglas and Jeffrey Naughton. Rate-based Query Optimization for Streaming Information Sources. SIGMOD 2002.

