
🤧😷🤒 Vasiliki Kalavri | Boston University 2020

CS 591 K1:
Data Stream Processing and Analytics

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

Spring 2020

4/14: Stream processing optimizations

mailto:vkalavri@bu.edu

🤧😷🤒 Vasiliki Kalavri | Boston University 20202

• Costs of streaming operator execution
• state, parallelism, selectivity

• Dataflow optimizations
• plan translation alternatives

• Runtime optimizations
• load management, scheduling, state management

• Optimization semantics, correctness, profitability

Topics covered in this lecture

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Revisiting the basics

3

source
sink

input port output port

dataflow graph

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Revisiting the basics

4

Dataflow graph
• operators are nodes, data channels are

edges
• channels have FIFO semantics
• streams of data elements flow

continuously along edges
Operators

• receive one or more input streams
• perform tuple-at-a-time, window, logic,

pattern matching transformations
• output one or more streams of possibly

different type

A series of transformations
on streams in

Stream SQL, Scala, Python,
Rust, Java…

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Logic

State

<k, v> <#Brexit, 521>

<#WorldCup, 480>

<#StarWars, 300>

<#Brexit>

<#Brexit, 521>

Stateful operators

5

• Stateful operators maintain
state that reflect part of the
stream history they have seen

• windows, continuous aggregations,
distinct…

• State is commonly partitioned
by key

• State can be cleared based on
watermarks or punctuations

• window fires, post becomes inactive

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Operator selectivity

6

• The number of output elements produced per number of input elements
• a map operator has a selectivity of 1, i.e. it produces one output element

for each input element it processes
• an operator that tokenizes sentences into words has selectivity > 1
• a filter operator typically has selectivity < 1

Is selectivity always known at development time?

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Types of Parallelism

7

BA

C

A
B

D

A

A
B

split

Pipeline: A || B

Task: B || C

Data: A || A

🤧😷🤒 Vasiliki Kalavri | Boston University 20208

Distributed execution in Flink

🤧😷🤒 Vasiliki Kalavri | Boston University 20209

Identify the most efficient way to execute a query

• There may exist several ways to execute a computation
• query plans, e.g. order of operators
• scheduling and placement decisions
• different algorithms, e.g. hash-based vs. broadcast join

• What does performance depend on?
• input data, intermediate data
• operator properties

• How can we estimate the cost of different strategies?
• before execution or during runtime

Query optimization (I)

🤧😷🤒 Vasiliki Kalavri | Boston University 202010

Optimization strategies
• enumerate equivalent execution plans
• minimize intermediate data and

communication

Alternatives
• data structures
• sorting vs hashing
• indexing, pre-fetching
• minimize disk access
• scheduling

Objectives
• optimize resource utilization or minimize

resources
• decrease latency, increase throughput
• minimize monetary costs (if running in the

cloud)

Query optimization (II)

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Cost-based optimization

11

Parsed program
representation

Optimizer

statistics

input

plan A plan B

output

Lowest-cost plan

🤧😷🤒 Vasiliki Kalavri | Boston University 202012

• What does efficient mean in the context of streaming?
• queries run continuously
• streams are unbounded

• In traditional ad-hoc database queries, the query plan is generated on-
the-fly. Different plans can be used for two consecutive executions of the
same query.

• A streaming dataflow is generated once and then scheduled for execution.
• Changing execution strategy while the query is running might be

impractical.
• state accumulation and re-partitioning
• high-availability and low latency requirements
• scheduling overhead

Challenges in streaming optimization

🤧😷🤒 Vasiliki Kalavri | Boston University 202013

• Profitability: under what conditions does the optimization improve
performance?

• can the decision be automatic?

• Safety: under what conditions does the optimization preserve
correctness?

• maintain state semantics
• maintain result and selectivity semantics

• Dynamism: can the optimization be applied during runtime or does it
have to be applied statically?

When to optimize?

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Catalog of
Optimizations

14

🤧😷🤒 Vasiliki Kalavri | Boston University 202015

Safety

• Attribute availability: the set of attributes B reads from must be disjoint from
the set of attributes A writes to.

• Commutativity: the results of applying A and then B must be the same as
the result of applying B and then A.

• holds if both operators are stateless

Operator re-ordering
BA AB

Move selective operators upstream to filter data early

🤧😷🤒 Vasiliki Kalavri | Boston University 202016

Profitability
• Selectivity of A = 0.5
• Profitable when selectivity of B < 0.5

Operator re-ordering
BA AB

🤧😷🤒 Vasiliki Kalavri | Boston University 202017

• A static graph transformation
that enables re-ordering at
runtime

• It dynamically routes data after
measuring which ordering is the
most profitable

Dynamic re-ordering with Eddy

BA DC

Eddy

C D

A B

🤧😷🤒 Vasiliki Kalavri | Boston University 202018

Safety
• attribute availability: the set of attributes B reads from must be disjoint from the set of attributes A writes to.
• commutativity: the results of applying A and then B must be the same as the result of applying B and then A.

• holds if both operators are stateless

Re-ordering split and merge

splitmerge
mergesplit

mergesplit

When might this be beneficial?

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

• Use equivalence transformation rules if the language allows
• selection operations are commutative

• theta-join operations are commutative

• natural joins are associative

• Move projections early to reduce data item size

• Pick join orderings to minimize the size of intermediate results
• execute selective joins first => follow-up joins will have less work to do

Algebraic re-orderings

🤧😷🤒 Vasiliki Kalavri | Boston University 202020

Safety
• Ensure same algorithm: the redundant operators must perform an equivalent computation
• Ensure mergeable state: even a simple counter might differ on a combined stream vs. on

separate streams

Redundancy elimination

Eliminate redundant operations, aka subgraph sharing

B

A
B C

D

A B
C

D

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

B

21

Profitability
• Running two applications together on a

single core, one with operators B and
C, the other with operators B and D.

Redundancy elimination

B

A
B C

D

A B
C

D

🤧😷🤒 Vasiliki Kalavri | Boston University 202022

• Multi-tenancy
• in streaming systems that build one dataflow graph for several queries
• when applications analyze data streams from a small set of sources

• Operator elimination
• remove a no-op, e.g. a projection that keeps all attributes
• remove idempotent operations, e.g. two selections on the same predicate
• remove a dead subgraph, i.e. one that never produces output

Redundancy elimination variations

How can no-op or idempotent operators appear in an application?

🤧😷🤒 Vasiliki Kalavri | Boston University 202023

Ensure the combination of A1, A2 is
equivalent to A: Given a stream s, make sure
A2(A1(s)) = A(s), e.g.,

• if A is a selection operator and the selection
predicate uses logical conjunction

• if A is a projection on multiple attributes
• if A is an idempotent aggregation

Operator separation
A A2A1

Separate operators into smaller computational steps

• beneficial if it enables other
optimizations, e.g. re-ordering

• if the pipeline parallelism pays off

Safety Profitability

🤧😷🤒 Vasiliki Kalavri | Boston University 202024

• Cost of Merge = 0.5
• Cost of A = 0.5
• Splitting A allows a pre-aggregation

similar to what combiners do in
MapReduce

Operator separation

merge

X merge A

AX merge

A1 merge A2

A2A1

X

X

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

map(String key, String value):
 // key: document name
 // value: document contents
 for each URL u in value:

 EmitIntermediate(u, "1");

reduce(String key, Iterator values):
 // key: a URL
 // values: a list of counts
 int result = 0;
 for each v in values:

 result += ParseInt(v);

 Emit(key, AsString(result));

MapReduce combiners example:
URL access frequency

(k2, list(v2)) → list(v2)

(k1, v1) → list(k2, v2)

map()

reduce()

25

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

MapReduce combiners example:
URL access frequency

26

map()

reduce()

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11;
Linux i686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset:
ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11;
Linux i686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset:
ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11;
Linux i686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset:
ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11;
Linux i686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset:
ISO-8859-1,utf-8;q=0.7,*;q=0.3

www.google.be, 1
maps.google.com, 1
maps.google.com, 1

www.google.be, 2
www.wikipedia.org, 5

maps.google.com, 3

map()

map()

map()

www.wikipedia.org, 1
www.wikipedia.org, 1

www.wikipedia.org, 1
www.wikipedia.org, 1
www.wikipedia.org, 1

reduce()

www.google.be, 1
maps.google.com, 1

https://www.google.be/
https://www.google.be/
https://maps.google.com/
http://maps.google.com
http://www.google.be
http://www.wikipedia.org
http://maps.google.com
http://www.wikipedia.org
http://www.wikipedia.org
http://www.wikipedia.org
http://www.wikipedia.org
http://www.wikipedia.org
http://www.google.be
http://maps.google.com

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

MapReduce combiners example:
URL access frequency

27

map()

reduce()

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11;
Linux i686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset:
ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11;
Linux i686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset:
ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11;
Linux i686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset:
ISO-8859-1,utf-8;q=0.7,*;q=0.3

GET /dumprequest HTTP/1.1
Host: rve.org.uk
Connection: keep-alive
Accept: text/html,application/
xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11;
Linux i686) AppleWebKit/537.22
(KHTML, like Gecko) Ubuntu
Chromium/25.0.1364.160 Chrome/
25.0.1364.160 Safari/537.22
Referer: https://www.google.be/
Accept-Language: en-US,en;q=0.8
Accept-Charset:
ISO-8859-1,utf-8;q=0.7,*;q=0.3

www.google.be, 1
maps.google.com, 2

www.google.be, 2
www.wikipedia.org, 5

maps.google.com, 3

map()

map()

map()

www.wikipedia.org, 2

www.wikipedia.org, 3

reduce()

www.google.be, 1
maps.google.com, 1

https://www.google.be/
https://www.google.be/
https://maps.google.com/
http://www.google.be
http://www.wikipedia.org
http://maps.google.com
http://www.wikipedia.org
http://www.wikipedia.org
http://www.google.be
http://maps.google.com

🤧😷🤒 Vasiliki Kalavri | Boston University 202028

Safety
• Ensure resource kinds: all resources required by a fused operator should remain available.
• Ensure resource amounts: the total amount of resources required by the fused operator must be

available on a single host.
• Avoid infinite recursion: caution if there exist cycles in the stream graph.

Operator fusion
A

Avoid the overhead of serialization and transport

BA B

🤧😷🤒 Vasiliki Kalavri | Boston University 202029

• removes pipeline parallelism but saves
communication and serialization cost

• if operators are separate, throughput is
bounded by either communication or
processing cost

• if fused, throughput is determined by
operator cost only

Operator fusion
ABA B

Profitability

🤧😷🤒 Vasiliki Kalavri | Boston University 202030

• Non-fused operators can run on different threads

• The optimizer can interact with the scheduler and fuse operators
according to the number of available cores / threads

• Fused operators can share the address space but use separate threads
of control

• avoid communication cost without losing pipeline parallelism
• use a shared buffer for communication

• Fused filters / projections at the source can significantly reduce I/O and
intermediate results size

Synergies with scheduling and other optimizations

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Task chaining: Fusion in Flink

31

StreamExecutionEnvironment
.disableOperatorChaining()

val input: DataStream[X] = ...
val result: DataStream[Y] = input
.filter(new Filter1())
.map(new Map1())
// disable chaining for Map2
.map(new Map2()).disableChaining()
.filter(new Filter2())

🤧😷🤒 Vasiliki Kalavri | Boston University 202032

Safety
• Ensure partitioned state: each parallel operator maintains disjoint state based on a key

attribute
• Ensure ordering constraints: if downstream operator expects elements in a particular

order, merging should handle that
• Avoid deadlocks: if split cannot push data because one channel is full and merge cannot

receive data because another channel is empty

Operator fission

Data parallelism, replication

A

A

Asplit merge

🤧😷🤒 Vasiliki Kalavri | Boston University 202033

• if operator is costly enough to bring
benefit when parallelized

• split incurs a routing overhead

• merge might incur overhead if ordering
is required

• p/s/o: parallel/sequential/overhead

Operator fission
A

A

Asplit merge

Profitability

🤧😷🤒 Vasiliki Kalavri | Boston University 202034

• Fission might be preferable to pipeline and task parallelism because it
balances load more evenly

• Data-parallel streaming languages enable fission by construction

• Elastic scaling techniques enable dynamic operator fission by adjusting
the number of parallel operator instances according to data rates

• straight-forward for stateless operators, non-trivial for stateful

Variations and dynamism

🤧😷🤒 Vasiliki Kalavri | Boston University 202035

Safety
• Ensure resource availability: the host must have enough resources for all assigned operators
• Ensure security constraints: what are the trusted hosts for each operator?
• Ensure state migration: if placement is dynamic and the operator is stateful, its state must be

moved in a consistent manner

Operator placement

Assignment to hosts, colocation

D

A B C

E D

A B C

E

🤧😷🤒 Vasiliki Kalavri | Boston University 202036

• Trade communication cost
against resource utilization

• Operators on the same host
compete for resources, e.g.
memory and CPU

Operator placement

D

A B C

E D

A B C

E

Profitability

🤧😷🤒 Vasiliki Kalavri | Boston University 202037

• A TaskManager can execute several tasks at the same time.
• It is statically configured with a certain number of processing slots that

defines the maximum number of concurrent tasks it can execute.
• A processing slot can execute one slice of an application, i.e. one

parallel task of each operator of the application.

Operator placement in Flink

🤧😷🤒 Vasiliki Kalavri | Boston University 202038

Safety
• Avoid starvation: every data item is eventually processed
• Ensure each worker is qualified: if load balancing is applied after fission, each instance must

be capable of processing each item and have access to necessary state
• Establish placement safety: if load balancing while performing operator placement

Load balancing

Distribute workload evenly across resources

A2

A1split

A2

A1split

🤧😷🤒 Vasiliki Kalavri | Boston University 202039

• If it compensates for skew, e.g.
when there exist popular keys

• if there is skew, throughput is
bounded by the instance that
receives the highest load

Load balancing

Profitability

A2

A1split

A2

A1split

🤧😷🤒 Vasiliki Kalavri | Boston University 202040

Safety
• Ensure state visibility: operators sharing state are commonly fused and placed on the same

host.
• Avoid race conditions: either ensure the data is immutable or synchronize access to state.
• Manage memory safely: reclaiming and growing without bounds.

State sharing

Avoid unnecessary data copies

BA ΒΑ

🤧😷🤒 Vasiliki Kalavri | Boston University 202041

• it reduces stalls due to cache
misses or disk I/O

• fixed number of random state
accesses, 32K L1 cache

• the throughput of the non-shared
version degrades first

State sharing
BA ΒΑ

Profitability

🤧😷🤒 Vasiliki Kalavri | Boston University 202042

Safety
• Avoid deadlocks: if the dataflow graph is cyclic or if the batched operator shares a lock with

an upstream operator.
• Satisfy deadlines: for applications with real-time constraints or QoS latency constraints.

Batching

Process multiple data elements in a single batch

A A’

🤧😷🤒 Vasiliki Kalavri | Boston University 202043

• Batching trades throughput for latency
• It improves throughput by amortizing

operator firing and communication costs
over more data items

• Batching hurts latency as events can
only be processed once the entire batch
is complete

Batching

Profitability

A A’

Spark Streaming
• Treat streaming computation as a series of deterministic batch

computations on small time intervals

• Keep intermediate state in memory

• Use Spark's RDDs instead of replication

• Parallel recovery mechanism in case of failures

44

input stream time-based micro-batches

D-Streams
• During an interval, input data received is stored using RDDs

• A D-Stream is a group of such RDDs which can be processed using common operators

45

Example

• pageViews is a D-Stream grouped into 1s intervals

• ones is a (URL, 1) D-Stream

46

pageViews = readStream("http://...", "1s")

ones = pageViews.map(event => (event.url, 1)

counts = ones.runningReduce((a, b) => a + b)

47

Streaming as a series of batch jobs

• the maximum every 100 events?

48

t t+1 t+3 t+4 t+5 t+6 t+7t+2

3 events4 events 2 events?

How would you compute…

• the maximum every 100 events?
• clicks per user session?

49

t t+1 t+3 t+4 t+5 t+6 t+7t+2

logged in
logged out

How would you compute…

• the maximum every 100 events?
• clicks per user session?
• faster than the batch size?
• alerts when patterns occur?

50

t t+1 t+3 t+4 t+5 t+6 t+7t+2

How would you compute…

🤧😷🤒 Vasiliki Kalavri | Boston University 202051

• TaskManagers have a pool of network
buffers to send and receive data.

• If the sender and receiver run in
separate processes, they
communicate via permanent TCP
connections.

• If they run in the same process, the
sender task serializes the outgoing
records into a byte buffer.

• A TaskManager needs one dedicated
network buffer for each receiving task
that any of its tasks need to send data
to.

Batching in Apache Flink

• The TaskManagers ship data from sending
tasks to receiving tasks.

• The network component of a TaskManager
collects records in buffers before they are
shipped, i.e., records are not shipped one
by one but batched.

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Interacting optimizations

🤧😷🤒 Vasiliki Kalavri | Boston University 202053

• Martin Hirzel et. al. A Catalog of Stream Processing
Optimizations. (ACM Computing Surveys 2014).

• Ron Avnur and Joseph M. Hellerstein. Eddies: continuously adaptive
query processing. (SIGMOD 2000).

• Matei Zaharia et. al. Discretized streams: fault-tolerant streaming
computation at scale (SOSP ’13).

• Fabian Hueske, and Vasiliki Kalavri. Stream Processing with Apache
Flink. (O’Reilly Media ’19).

Lecture references

🤧😷🤒 Vasiliki Kalavri | Boston University 202054

• Re-ordering
• Shivnath Babu et. al. Adaptive Ordering of Pipelined Stream Filters. SIGMOD 2004.

• Scheduling and placement
• Peter R. Pietzuch et. al. Network-Aware Operator Placement for Stream-Processing Systems. ICDE 2006.
• Brian Babcock et. al. Chain : Operator Scheduling for Memory Minimization in Data Stream

Systems. SIGMOD 2003.
• Donald Carney et. al. Operator Scheduling in a Data Stream Manager. VLDB 2003.

• Load balancing and skew mitigation
• Muhammad Anis Uddin Nasir et. al. The power of both choices: Practical load balancing for distributed stream

processing engines. ICDE 2015.
• Nikos R. Katsipoulakis et. al. A holistic view of stream partitioning costs. VLDB 2017.

• Rate-based optimization
• Statis Viglas and Jeffrey Naughton. Rate-based Query Optimization for Streaming Information Sources. SIGMOD

2002.

Further reading

https://dblp.uni-trier.de/db/conf/icde/icde2006.html#PietzuchLSRWS06
https://dblp.uni-trier.de/db/conf/vldb/vldb2003.html#CarneyCZRCS03
https://dblp.uni-trier.de/db/conf/icde/icde2015.html#NasirMGKS15

