CS 591 K1:

Data Stream Processing and Analytics

Spring 2020

4/21: Sampling and filtering streams

Vasiliki (Vasia) Kalavri

vkalavri@bu.edu

Synopses for massive data streams

Synopsis: a lossy, compact summary of the input stream

- Maintaining synopses is often the only means of providing interactive response times when exploring massive datasets or high speed data streams.
- Queries are executed against the synopsis rather than the entire dataset.

A simple and efficient synopsis

Suppose that our data consists of a large numeric time series.
What summary would let us compute the statistical variance of this series?

$$
\operatorname{var}=\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}
$$

A simple and efficient synopsis

Suppose that our data consists of a large numeric time series.
What summary would let us compute the statistical variance of this series?

- the sum of all the values
- the sum of the squares of the values
- the number of observations

$$
\operatorname{var}=\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}
$$

A simple and efficient synopsis

Suppose that our data consists of a large numeric time series.
What summary would let us compute the statistical variance of this series?

- the sum of all the values
- the sum of the squares of the values
- the number of observations

$$
\operatorname{var}=\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}
$$

Then

- μ = sum / count
- $\operatorname{var}=($ sum of squares $/$ count $)-\mu^{2}$

A simple and efficient synopsis

Suppose that our data consists of a large numeric time series.
What summary would let us compute the statistical variance of this series?

- the sum of all the values
- the sum of the squares of the values
- the number of observations

$$
\operatorname{var}=\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}
$$

Then

- μ = sum / count
- $\operatorname{var}=($ sum of squares $/$ count $)-\mu^{2}$

We can compute the three summary values in a single pass through the data.

A simple and efficient synopsis

Suppose that our data consists of a large numeric time series.
What summary would let us compute the statistical variance of this series?

- the sum of all the values
- the sum of the squares of the values
- the number of observations

$$
\operatorname{var}=\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}
$$

Then

- $\mu=$ sum / count
- $\operatorname{var}=$ (sum of squares / count) $-\mu^{2}$

We can compute the three summary values in a single pass through the data.

Can this synopsis be used to answer general queries?

Synopses provide accurate estimations

- For many queries, an exact answer would require storing and analyzing the entire dataset
- Instead, we can relax this requirement and provide a good enough approximation
- A small synopsis can provide very accurate approximations using very little space:
- It might suffice to know that the true answer is roughly $\$ 5$ million without knowing that the exact answer is $\$ 5,001,482.76$.

Sampling streams

Samples: the most fundamental synopses

A sample is a set of data elements selected via some random process

How can we select a representative sample of an unbounded stream?

- we want to ask queries and get statistically meaningful answers about the entire stream
- we don't necessarily know the queries in advance
- we can store a fixed proportion of the stream, e.g. 1/10th

How can we select a representative sample of an unbounded stream?

- we want to ask queries and get statistically meaningful answers about the entire stream
- we don't necessarily know the queries in advance
- we can store a fixed proportion of the stream, e.g. 1/10th

Example use-case: Web search user behavior study

Q: How many queries did users repeat last month?

Solution \#1: uniform sampling

Q: How many queries did users repeat last month?

- Since we can store $1 / 10$ th of the stream, we select a stream element i with probability 10%.
- We can use a random generator that produces an integer r_{i} between 0 and 9 . We then select an input element i if $r_{i}=0$.

Solution \#1: uniform sampling

Q: How many queries did users repeat last month?

- Since we can store $1 / 10$ th of the stream, we select a stream element i with probability 10%.
- We can use a random generator that produces an integer r_{i} between 0 and 9 . We then select an input element i if $r_{i}=0$.

Will this approach provide the right answer?

Ted has issued n queries in the last month:

- s of those are unique
- d of those are duplicates
- no query was issued more than twice

How many of Ted's queries will be in the $1 / 10$ th sample, $S ?$

Each of the s unique queries has a probability $P_{s}=1 / 10$ to be selected:

- an expected number of $s / 10$ of those queries will be in S.

How many of Ted's queries will be in the $1 / 10$ th sample, S ?

What about the duplicates, d ?

How many of Ted's queries will be in the $1 / 10$ th sample, S ?

What about the duplicates, d ?

Probability that both occurrences are in S :

$$
\mathrm{Pa}_{\mathrm{a}}=1 / 10 * 1 / 10=1 / 100 \Rightarrow \boldsymbol{d} / 100 \text { will appear in } S \text { twice. }
$$

How many of Ted's queries will be in the $1 / 10$ th sample, S ?

What about the duplicates, d ?

Probability that both occurrences are in S :

$$
P_{a}=1 / 10 * 1 / 10=1 / 100 \Rightarrow \boldsymbol{d} / 100 \text { will appear in } S \text { twice. }
$$

Probability that only one occurrence is in S :

$$
P_{b}=1 / 10 * 9 / 10+9 / 10 * 1 / 10=18 / 100=>
$$

$\mathbf{1 8}^{*} d / 100$ will appear in S once.

How many of Ted's queries will be in the $1 / 10$ th sample, S ?

What about the duplicates, d ?

Probability that both occurrences are in S :

$$
P_{a}=1 / 10 * 1 / 10=1 / 100 \Rightarrow \boldsymbol{d} / 100 \text { will appear in } S \text { twice. }
$$

```
one is selected the other is not
```

Proba Fility tlat only one occurrence is in S :
$P_{b}=1 / 10 *(9 / 10+9 / 10 * 1 / 10=18 / 100=>$
$\mathbf{1 8}^{*} d / 100$ will appear in S once.

Q: How many queries did Ted repeat last month?
$\frac{\frac{d}{100}}{\frac{s}{10}+\frac{18 d}{100}+\frac{d}{100}}$

Q: How many queries did Ted repeat last month?

Q: How many queries did Ted repeat last month?

Q: How many queries did Ted repeat last month?

Q: How many queries did Ted repeat last month?

...instead of $\frac{d}{s+d}$

Solution \#2: sampling users

Sample 1/10th of the users instead

Solution \#2: sampling users

- Maintain a list of all users seen so far and a flag indicating whether they belong to the sample or not
- When a query arrives:
- if the user is sampled: add the query to S
- if we haven't seen the user before: generate a random integer r_{u} between 0 and 9 and add the user to the sample if $r_{u}=0$.

Solution \#2: sampling users

Sample 1/10th of the users instead

- Maintain a list of all users seen so far and a flag indicating whether they belong to the sample or not
- When a query arrives:
- if the user is sampled: add the query to S
- if we haven't seen the user before: generate a random integer r_{u} between 0 and 9 and add the user to the sample if $r_{u}=0$.

Do we need to keep all users in memory?

We can use a hash function h to hash the user name (or IP) and select queries only when h (user) $=0$.

In general:

We can obtain a sample of any a / b fraction of users by hashing usernames to b buckets and selecting the query if h (user) <a.

For example, to get a 30% sample:

- use 10 buckets, $b_{0}, b_{1}, \ldots, b_{9}$
- select the query if the user hash value is in b_{0}, b_{1}, or b_{2}.

We can use a hash function h to hash the user name (or IP) and select queries only when h (user) $=0$.

In general:

We can obtain a sample of any a / b fraction of users by hashing usernames to b buckets and selecting the query if h (user) $<a$.

For example, to get a 30% sample:

- use 10 buckets, $b_{0}, b_{1}, \ldots, b_{9}$
- select the query if the user hash value is in b_{0}, b_{1}, or b_{2}.

Instead of a fixed proportion, assume we can only store a sample S of fixed size, e.g. s elements.

Instead of a fixed proportion, assume we can only store a sample S of fixed size, e.g. s elements.

How can we continuously maintain a representative fixed-size sample of the stream so far?

Instead of a fixed proportion, assume we can only store a sample S of fixed size, e.g. s elements.

How can we continuously maintain a representative fixed-size sample of the stream so far?

At all times, we want the following property to hold:
an element is in S with probability s / n, where n is the total number of stream elements seen so far.

Instead of a fixed proportion, assume we can only store a sample S of fixed size, e.g. s elements.

How can we continuously maintain a representative fixed-size sample of the stream so far?

At all times, we want the following property to hold:
an element is in S with probability s / n, where n is the total number of stream elements seen so far.

As if we could keep all n elements and at any time pick s of those with equal probability.

Reservoir sampling

- Add the first s elements to S.
- When the $n_{t h}$ element arrives, $e_{n}, n>s$, keep it with probability $p=s / n$.
- If e_{n} is selected, then pick an existing element in S at random and replace it with e_{n}.

Claim: at time t_{n}, the probability that an element appears in S is s / n.

Claim: at time t_{n}, the probability that an element appears in S is s / n.

We'll use induction to prove this, i.e. we need to prove that the claim is true for $n+1$:
at time t_{n+1}, elements are in S with probability $s /(n+1)$.

Claim: at time t_{n}, the probability that an element appears in S is s / n.

We'll use induction to prove this, i.e. we need to prove that the claim is true for $n+1$:
at time t_{n+1}, elements are in S with probability $s /(n+1)$.

Base case

At time t_{s}, S has exactly s elements and each one appears in S with probability $s / s=1=>$ true.

Inductive step
At time t_{n+1}, we need to compute the probability that an element x in S remains:

Inductive step
At time t_{n+1}, we need to compute the probability that an element x in S remains:

Probability that element
$n+1$ is not selected

Inductive step
At time t_{n+1}, we need to compute the probability that an element x in S remains:

Probability that element
$n+1$ is not selected
OR

Inductive step

At time t_{n+1}, we need to compute the probability that an element x in S remains:

Probability that element
Probability that $n+1$ is selected
$n+1$ is not selected

Inductive step

At time t_{n+1}, we need to compute the probability that an element x in S remains:

Probability that element
$n+1$ is not selected
OR

$$
P_{1}=1-\frac{s}{n+1}
$$

Probability that $n+1$ is selected
but it doesn't replace x

Inductive step
At time t_{n+1}, we need to compute the probability that an element x in S remains:

Probability that element $n+1$ is not selected

$$
P_{1}=1-\frac{s}{n+1}
$$

\square

$$
P_{2}=\frac{s}{n+1} *\left(1-\frac{1}{s}\right)=\frac{s-1}{n+1}
$$

Inductive step
At time t_{n+1}, we need to compute the probability that an element x in S remains:

> Probability that element $n+1$ is not selected

$$
P_{1}=1-\frac{s}{n+1}
$$

$$
\begin{aligned}
P_{2} & =\overbrace{\frac{s}{n+1}}^{n} *\left(1-\frac{1}{s}\right)=\frac{s-1}{n+1} \\
& =\text { selected }
\end{aligned}
$$

Inductive step
At time t_{n+1}, we need to compute the probability that an element x in S remains:

Probability that element $n+1$ is not selected

OR | Probability that $n+1$ is selected |
| :--- |
| but it doesn't replace x |

$$
P_{1}=1-\frac{s}{n+1}
$$

$$
\begin{aligned}
& P_{2}= \underbrace{\frac{s}{n+1}}_{\text {selected }} *\left(1-\frac{1}{s}\right)=\frac{s-1}{n+1} \\
& \text { chosen to replace } \\
&
\end{aligned}
$$

Inductive step
At time t_{n+1}, we need to compute the probability that an element x in S remains:

> Probability that element $n+1$ is not selected

$$
P_{1}=1-\frac{s}{n+1}
$$

$$
\begin{array}{r}
P_{2}=\frac{s}{n+1} *\left(1-\frac{1}{s}\right)=\frac{s-1}{n+1} \\
\text { selected }
\end{array}
$$

$$
P_{1}+P_{2}=\frac{n}{n+1}
$$

So, at time t_{n+1}, the probability that an element is in S is equal to:

So, at time t_{n+1}, the probability that an element is in S is equal to:

$$
\frac{s}{n} * \frac{n}{n+1}=\frac{s}{n+1}
$$

So, at time t_{n+1}, the probability that an element is in S is equal to:

$$
\text { it was in } S \text { at } t_{n}, \frac{s}{n} * \frac{n}{n+1}=\frac{s}{n+1}
$$

So, at time t_{n+1}, the probability that an element is in S is equal to:

Advantages of sampling

- Simple to understand and implement.
- Almost 100 years of prior research in sampling we can apply.
- The sample can often be constructed after a query has been issued and it can be adapted according to query needs:
- if a small sample does not provide enough accuracy for a specific query, then more tuples can be sampled to provide for more accuracy, in an online fashion.
- It is a general-purpose synopsis and can be used to answer a wide variety of arbitrary queries.

Drawbacks of sampling

- It might be unsuitable for highly selective queries:
- queries that depend only upon a few tuples from the dataset
- Providing an estimate via a sample can be much more expensive than estimation via other methods:
- Evaluating a query over a 5% sample of a dataset may take 5% of the time that it takes to evaluate the query over the entire dataset. A $20 \times$ speedup may be significant, but other, more compact synopses such as histograms can provide much faster estimates.
- Sampling is generally sensitive to skew and outliers.
- It is difficult to find a good estimator for some queries:
- How can we scale the answer for NOT IN, DISTINCT, anti-joins, outer-joins

Filtering streams

The membership problem

What data structure would you use to:

- Filter out all emails that are sent from a suspected spam address?
- Filter out all URLs that contain malware?
- Filter out all compromised passwords?
- Remove duplicate tuples on recovery when using upstream backup?

The membership problem

What data structure would you use to:

- Filter out all emails that are sent from a suspected spam address?
- Filter out all URLs that contain malware?
- Filter out all compromised passwords?
- Remove duplicate tuples on recovery when using upstream backup?

A hash table requires O(logn) bits per element which might still be infeasible in practice...

The Bloom filter

- Introduced by Burton Bloom in 1970.
- A probabilistic data structure for representing a (possibly growing) dataset of elements that supports:
- adding an element to the set
- checking if an element belongs to the set
- False positives are possible: an element is not a member of the set but the filter says it is.
- No false negatives: if the filter says an element is not in the set, then it definitely isn't.

The Bloom filter

- A bit array of size n , where n is generally higher than the expected number of elements in the input
- k independent and uniformly distributed hash functions, where $\mathrm{k} \ll \mathrm{n}$

Adding an element to the filter

The empty filter is initialized to all Os

$$
\begin{aligned}
& \text { for } i=1 \text { to } k \text { do } \\
& j=h_{i}(x) \\
& \text { set } j_{\text {th }} \text { bit in the filter }
\end{aligned}
$$

Testing if an element is in the filter

If all bits are set, the element may exist in the set.

If at least one element is 0 , the element is definitely not a member.

```
for i=1 to k do
    j = hi(x)
    if the jth bit is not set then
        return FALSE
return TRUE
```


Probability of a false positive

- The probability of false positives depends on the choice of k and n :

$$
P_{f p} \approx\left(1-e^{\left.\frac{k m}{n}\right)^{k}}{ }^{*}\right.
$$

- Let m be the number of expected elements:
- If the allocated bits per element, n / m, is too small, the filter will fill up too quickly
- All lookups will yield a false positive
- For a given n / m, the false positive probability can be tuned by choosing the number of hash functions:

$$
k=\frac{n}{m} \ln 2
$$

Parameter tuning example

Assume we expect around 1 billion elements and we have a fixed memory budget of 512MB

- How many hash functions to use?
- What would be the false positive rate?

Parameter tuning example

Assume we expect around 1 billion elements and we have a fixed memory budget of 512MB

- How many hash functions to use? $k \approx 3$
- What would be the false positive rate? $\quad P_{f p} \approx 0.14$

Parameter tuning example

Assume we expect around 1 billion elements and we have a fixed memory budget of 512MB

- How many hash functions to use? $\quad k \approx 3$
- What would be the false positive rate?

$$
P_{f p} \approx 0.14
$$

What if we had 1 GB of memory instead?

Parameter tuning example

Assume we expect around 1 billion elements and we have a fixed memory budget of 512MB

- How many hash functions to use? $\quad k \approx 3$
- What would be the false positive rate?

$$
P_{f p} \approx 0.14
$$

What if we had 1 GB of memory instead?

$$
\begin{aligned}
& k \approx 5 \\
& P_{f p} \approx 0.02
\end{aligned}
$$

Optimal number of hash functions

Given an expected number of elements and a fixed memory budget, how many hash functions do we need in order to minimize $\mathrm{P}_{\mathrm{f} p}$?

Optimal number of hash functions

Given an expected number of elements and a fixed memory budget, how many hash functions do we need in order to minimize $\mathrm{P}_{\mathrm{f} p}$?

After m elements have been inserted to the filter, what is the probability P_{o} that a bit is still 0 ?

Optimal number of hash functions

Given an expected number of elements and a fixed memory budget, how many hash functions do we need in order to minimize P_{f} ?

After m elements have been inserted to the filter, what is the probability P_{o} that a bit is still 0 ?

1. The probability that h_{I} sets bit j is $\frac{1}{n}$

Optimal number of hash functions

Given an expected number of elements and a fixed memory budget, how many hash functions do we need in order to minimize P_{f} ?

After m elements have been inserted to the filter, what is the probability P_{o} that a bit is still 0 ?

1. The probability that h_{I} sets bit j is $\frac{1}{n}$
2. The probability that a bit was not set by any of the k hash functions is $\left(1-\frac{1}{n}\right)^{k}$

Optimal number of hash functions

Given an expected number of elements and a fixed memory budget, how many hash functions do we need in order to minimize P_{f} ?

After m elements have been inserted to the filter, what is the probability P_{o} that a bit is still 0 ?

1. The probability that h_{I} sets bit j is $\frac{1}{n}$
2. The probability that a bit was not set by any of the k hash functions is $\left(1-\frac{1}{n}\right)^{k}$
3. After all m elements have been inserted,
$P_{0}=\left(1-\frac{1}{n}\right)^{k m}$

Optimal number of hash functions

$P_{0}=\left(1-\frac{1}{n}\right)^{k m}$
We know that $(1-\epsilon)^{\frac{1}{\epsilon}} \approx \frac{1}{e}$,
so for $\epsilon=\frac{1}{n} \rightarrow P_{0} \approx e^{-\frac{k m}{n}}$.

Optimal number of hash functions

$P_{0}=\left(1-\frac{1}{n}\right)^{k m}$
We know that $(1-\epsilon)^{\frac{1}{\epsilon}} \approx \frac{1}{e}$,
so for $\epsilon=\frac{1}{n} \rightarrow P_{0} \approx e^{-\frac{k m}{n}}$.

The probability of a false positive is the probability that an element that was not inserted in the filter is mapped by all k hash functions to 1s:

$$
P_{f p}=\left(1-P_{0}\right)^{k} \rightarrow P_{f p}=\left(1-e^{\frac{k m}{n}}\right)^{k}
$$

Optimal number of hash functions

$P_{0}=\left(1-\frac{1}{n}\right)^{k m}$
We know that $(1-\epsilon)^{\frac{1}{\epsilon}} \approx \frac{1}{e}$,
so for $\epsilon=\frac{1}{n} \rightarrow P_{0} \approx e^{-\frac{k m}{n}}$.

The probability of a false positive is the probability that an element that was not inserted in the filter is mapped by all k hash functions to 1s:

$$
P_{f p}=\left(1-P_{0}\right)^{k} \rightarrow P_{f p}=\left(1-e^{\frac{k m}{n}}\right)^{k}
$$

If we take the derivative, the value that minimizes P_{fp} is $k=\frac{n}{m} \ln 2$.

Optimal number of hash functions

$$
P_{f p} \approx\left(1-e^{\frac{k m}{n}}\right)^{k}
$$

Unfortunately, this classic formula is wrong...

Fig. 2. Relative error of classic versus new formula.

Optimal number of hash functions

$$
P_{f p} \approx\left(1-e^{\frac{k m}{n}}\right)^{k}
$$

Unfortunately, this classic formula is wrong...
If after m elements have been inserted to the filter, s bits are set, then:
$P_{s e t}=\frac{s}{n}$ and $P_{f p}=\left(\frac{s}{n}\right)^{k}$,
which is at least as large as the classic formula.

Fig. 2. Relative error of classic versus new formula.

Further reading

- Graham Cormode, Minos Garofalakis, Peter J. Haas and Chris Jermaine. Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. https://dsf.berkeley.edu/cs286/papers/synopsesfntdb2012.pdf
- Jure Lescovec, Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets. http://infolab.stanford.edu/~ullman/mmds/book.pdf
- Ken Christensen, Allen Roginsky, Miguel Jimeno. A new analysis of the false positive rate of a Bloom filter. Information Processing Letters 110 (2010).

