CS 591 K1:

Data Stream Processing and Analytics
Spring 2020

4/23: Cardinality and frequency estimation

Vasiliki (Vasia) Kalavri
vkalavri@bu.edu

e @ Vasiiki Kalavr | Boston University 2020

mailto:vkalavri@bu.edu

Counting distinct
elements

e @ Vasiiki Kalavr | Boston University 2020

How can we count the number of distinct elements seen so far in a stream?

Example use-case: Distinct users visiting one or multiple webpages

e @ Vaslki Kalavri | Boston University 2020

How can we count the number of distinct elements seen so far in a stream?

Example use-case: Distinct users visiting one or multiple webpages

Nailve solution: maintain a hash table

e @ Vaslki Kalavri | Boston University 2020

How can we count the number of distinct elements seen so far in a stream?

Example use-case: Distinct users visiting one or multiple webpages

Nailve solution: maintain a hash table

= (Convert the stream into a multi-set of uniformly
distributed random numbers using a hash function.

e @ Vaslki Kalavri | Boston University 2020

How can we count the number of distinct elements seen so far in a stream?

Example use-case: Distinct users visiting one or multiple webpages

Nailve solution: maintain a hash table

= (Convert the stream into a multi-set of uniformly
distributed random numbers using a hash function.

The more different elements we encounter in the
stream, the more ditfferent hash values we shall see.

e @ Vaslki Kalavri | Boston University 2020

Let h be a hash function that maps each stream element into M = log.N Dbits,
where N Is the domain of input elements:

M—1

k=0

For each element x, let rank(x) be the number of 0s in the end of h(x):

¢ e.q.
¢ X1 = 318, h(XI) — 12 or 01 100 => I‘ank(XI) — 2
* X, = 9013, h(Xz) — 24 or 11000 => rank(Xz) = 3

e @ Vaslki Kalavri | Boston University 2020

Let n be the number of distinct elements in the Inp

and let R be

he maximum value of rank() seen Sso f

Ut stream so far
ar.

e @ Vaslki Kalavri | Boston University 2020

Let n be the number of distinct elements in the input stream so far
and let R be the maximum value of rank() seen so far.

Claim: The maximum observed rank is a good estimate of log,n.

In other words, the estimated number of distinct elements is equal to:

A=2"

e @ Vaslki Kalavri | Boston University 2020

The hash function h hashes x to any of N values with probability 7/V.

Out of all x we hash:
e around 50% will have a binary representation that ends in at least one O:
o XX (the probability of a O is 1/2)
e around 25% will end In at least two 0s:
o FFFFEFO0 (1/2 * 1/2)
* and soon...

e @ Vaslki Kalavri | Boston University 2020

The hash function h hashes x to any of N values with probability 7/V.

Out of all x we hash:
e around 50% will have a binary representation that ends in at least one O:
o XX (the probability of a O is 1/2)
e around 25% will end In at least two 0s:
o FFFFEFO0 (1/2 * 1/2)
* and soon...

[f one 0 is the maximum we’'ve seen, that indicates 2 distinct elements,
whereas If two 0s is the maximum we’ve seen, that indicates 4 distinct elements,

e @ Vaslki Kalavri | Boston University 2020

The hash function h hashes x to any of N values with probability 7/V.

Out of all x we hash:
e around 50% will have a binary representation that ends in at least one O:
o XX (the probability of a O is 1/2)
e around 25% will end In at least two 0s:
o FFFFEFO0 (1/2 * 1/2)
* and soon...

[f one 0 is the maximum we’'ve seen, that indicates 2 distinct elements,
whereas If two 0s is the maximum we’ve seen, that indicates 4 distinct elements,

It takes 2r hash calls before we encounter a result with r Os.

e @ Vaslki Kalavri | Boston University 2020

s this a good estimate”

e @ Vasiiki Kalavr | Boston University 2020

s this a good estimate”

The probability that a given h(x) ends in at least r Os Is:

1 1.1 1
— kR =0
2 2 27772

e @ Vasiiki Kalavr | Boston University 2020

s this a good estimate”

The probability that a given h(x) ends In at least r Os Is:
1 1 1 1
—F_F— = =27
2 2 2 2
The probabillity of not seeing a tail with at least »r Os among k elements is:

(1 =27F

e @ Vasiiki Kalavr | Boston University 2020

s this a good estimate”

The probability that a given h(x) ends in at least r Os Is:

1 1.1 1
— kR =0
2 2 27772

The probabillity of not seeing a tail with at least »r Os among k elements is:

(1 . 2—rk

The probability that h(x) ends in less then r Os

6@ Vasiiki Kaavr | Boston University 2020

s this a good estimate”

The probability that a given h(x) ends in at least r Os Is:

1 1.1 1
— kR =0
2 2 27772

The probabillity of not seeing a tail with at least »r Os among k elements is:

(L = 2P ranxemens

The probability that h(x) ends in less then r Os

e @ Vaslki Kalavri | Boston University 2020

The probabillity of not seeing a tall
with at least r Os among k elements is (1 — 27

e @ Vaslki Kalavri | Boston University 2020

The probabillity of not seeing a tall
with at least r Os among k elements is (1 — 27

We know that (1 — e)V¢ = 1/e

e @ Vaslki Kalavri | Boston University 2020

The probabillity of not seeing a tall
with at least r Os among k elements is (1 — 27

We know that (1 — e)V¢ = 1/e

Fore =27 — (1 =27 =%

e @ Vaslki Kalavri | Boston University 2020

The probabillity of not seeing a tall
with at least r Os among k elements is (1 — 27

We know that (1 — e)V¢ = 1/e

Fore =27 — (1 =27 =%

o |If k> -£—>()ande_k2_r—>1

o

e @ Vaslki Kalavri | Boston University 2020

The probabillity of not seeing a tall
with at least r Os among k elements is (1 — 27

We know that (1 — e)V¢ = 1/e

Fore =27 — (1 =27 =%

o |If k> ;£—>()ande_k2_r—>1
2r
e If kK2 :2£—>ooande_k2_r—>0

e @ Vaslki Kalavri | Boston University 2020

The probabillity of not seeing a tall
with at least r Os among k elements is (1 — 27

We know that (1 — e)V¢ = 1/e

Fore =27 — (1 =2k =¢e %"

o |If k> ;£—>()ande_k2_r—>1
2r
e If kK2 :2£—>ooande_k2_r—>0

The estimate 2R cannot be too high or too low.

e @ Vaslki Kalavri | Boston University 2020

s It good enough®

e @ Vasiiki Kalavr | Boston University 2020

s It good enough®

It we increase the number of Os at the end of a hash value by 1, 2R doubles!
e R =4 2R =106 distinct elements

e R =5, 2k =32 distinct elements

e R =0, 2R = 64 distinct elements

No estimate in between powers of 2!

e @ Vaslki Kalavri | Boston University 2020

s It good enough®

It we increase the number of Os at the end of a hash value by 1, 2R doubles!
e R =4 2R =106 distinct elements

e R =5, 2k =32 distinct elements

e R =0, 2R = 64 distinct elements

No estimate in between powers of 2!

To get a better estimate, we need to use multiple hash functions and
combine their estimates:

e Using many hash functions for a high-rate stream is expensive
* Finding many random and independent hash functions is difficult

. eY @ Vasiiki Kalavr | Boston University 2020

Stochastic averaging

e @ Vasiiki Kalavr | Boston University 2020

Stochastic averaging

\ ¢
- = Use one hash function to simulate many by
o Yf ¢ splitting the hash value into two parts

10 e @ Vaslki Kalavri | Boston University 2020

Stochastic averaging

\ ¢
- = Use one hash function to simulate many by
o Yf ¢ splitting the hash value into two parts

We split the Input stream Into m = 2P sub-streams So, Sy, ..., Sm

For every element x, we compute h(x) and use the p first bits of the M-bit hash
value to select a sub-stream and the next M-p bits to compute the rank(.):

10 e @ Vaslki Kalavri | Boston University 2020

Stochastic averaging

\ L 4
- = Use one hash function to simulate many by
o Yf ¢ splitting the hash value into two parts

We split the input stream into m = 2P sub-streams So, Sy, ..., Sm

For every element x, we compute h(x) and use the p first bits of the M-bit hash
value to select a sub-stream and the next M-p bits to compute the rank(.):

For h(x) = (igiy ... 4y_1)y 1, € {0,1} we select one of m counters

COUNTYj], where J = (gij---1,_1)>

10 e @ Vaslki Kalavri | Boston University 2020

Stochastic averaging: example

Let M =5, p=2 and a hash function h; that maps elements to a binary
representation of length 5.

We split the stream Into m = 2P = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, ...}

19 e @ Vaslki Kalavri | Boston University 2020

Stochastic averaging: example

Let M =5, p=2 and a hash function h; that maps elements to a binary
representation of length 5.

We split the stream Into m = 2P = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, ...}

Substream Address Counter

19 e @ Vaslki Kalavri | Boston University 2020

Stochastic averaging: example

Let M =5, p=2 and a hash function h; that maps elements to a binary
representation of length 5.

We split the stream Into m = 2P = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, ...}

¢ X, = h — 101
=3 5(5) = 0010 Substream Address Counter
* X,=I4, hs(14) = 10110 o
* x3=5, hs(5)=00I0I SO
¢ x,=2, hs(2)=01000 SI
e %x:=8, hs(8)=00100 52
e X¢=I, hs(1)=110I0 3

19 e @ Vaslki Kalavri | Boston University 2020

Stochastic averaging: example

Let M =5, p=2 and a hash function h; that maps elements to a binary
representation of length 5.

We split the stream Into m = 2P = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, ...}

* Xi=5, h5(5):00 Substream Address Counter
* X,=I4, hs(14) = 10110 o 0

* x3=5, hs(5)=00I0I SO

¢ x,=2, hs(2)=01000 SI

e x,=8, hs(8)=00100 2

e X6=I, h;(1)=11010 >

19 e @ Vaslki Kalavri | Boston University 2020

Stochastic averaging: example

Let M =5, p=2 and a hash function h; that maps elements to a binary
representation of length 5.

We split the stream Into m = 2P = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, ...}

* Xi=5, h5(5) . OO Substream Address Counter
* Xy=14, h5(14) — IO S 0
e x3=5, hs(5)=o00I101I q
e x,=2, h;(2)=01000 |
4 5 S 1
e %x:=8, hs(8)=00100 2
e X6=I, h;(1)=11010 >

19 e @ Vaslki Kalavri | Boston University 2020

Stochastic averaging: example

Let M =5, p=2 and a hash function h; that maps elements to a binary
representation of length 5.

We split the stream Into m = 2P = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, ...}

* Xi=5; h5(5):00 Substream Address Counter
* x,=14, hs(14) =[10110 S)

e X3=5, hs(5) =0010I SO 3

e x,=2, hs(2)=01000 |

e x;=8, hs(8)=00100 > |

* X6=I, hs(1)=110I0 > |

19 e @ Vaslki Kalavri | Boston University 2020

| 0ogLog algorithm

Input: stream S, array of m counters, hash fiction h

Output: cardinality of S

for j=0 to m-1 do:
COUNT[j] = O

for x in S do:
1 = h(x)
J = getLeftBits(1, p)
r = rank(getRightBits(1i, M-p))
COUNT[j] = max(COUNT[J], Tr)

R = average(COUNT) // average of all j counters
output a * m * 2R // a is a constant, a ~ 0.39701, for m > 64.

15 e @ Vaslki Kalavri | Boston University 2020

Why LoglLog?

Let's assume we want to be able to count up to n distinct elements.
We need a hash function that maps each input element to log,n bits.

Then, each counter needs to be able to count up to log,(log.n) 0s.

13 e @ Vaslki Kalavri | Boston University 2020

Combining estimates

 Average won’t work: The expected value of 2fis too large.

 Median won’t work: it is always a power of 2, thus, If the correct
estimate Is between two powers of 2, we won't get a good estimate.

Solution: harmonic mean (HyperLoglLogQ)

m—1
A=a, -m?-(Z 0 —COUNTIjly
J=0

14 e @ Vaslki Kalavri | Boston University 2020

Standard error

The standard error of the LoglLog algorithm is inversely related to the
number of counters m:

For m =256, the error 1S about 8%

For m = 1024, the error decreases to 4%

15 e @ Vaslki Kalavri | Boston University 2020

Space reqguirements

e @ Vasiiki Kalavr | Boston University 2020

Space reqguirements

As we read the stream, it Is not necessary to store any elements seen:

16 e @ Vaslki Kalavri | Boston University 2020

Space reqguirements

As we read the stream, it Is not necessary to store any elements seen:

 Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

16 e @ Vaslki Kalavri | Boston University 2020

Space reqguirements

As we read the stream, it Is not necessary to store any elements seen:

 Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

* The hash value needs to map elements to M = logz(230) = 30 bits.

16 e @ Vaslki Kalavri | Boston University 2020

Space reqguirements

As we read the stream, it Is not necessary to store any elements seen:

 Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

* The hash value needs to map elements to M = logz(230) = 30 bits.

 \We need 1024 counters, so m = 210 and we need p = logam = 10
bits for routing.

16 e @ Vaslki Kalavri | Boston University 2020

Space reqguirements

As we read the stream, it Is not necessary to store any elements seen:

 Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

* The hash value needs to map elements to M = logz(230) = 30 bits.

 \We need 1024 counters, so m = 210 and we need p = logam = 10
bits for routing.

e Each counter needs to be able to count up to 20 0s, so we need to
allocate log220 = 4.32 bits per counter.

16 e @ Vaslki Kalavri | Boston University 2020

Space reqguirements

As we read the stream, it Is not necessary to store any elements seen:

 Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

* The hash value needs to map elements to M = logz(230) = 30 bits.

 \We need 1024 counters, so m = 210 and we need p = logam = 10
bits for routing.

e Each counter needs to be able to count up to 20 0s, so we need to
allocate log220 = 4.32 bits per counter.

* |f we round up to 5 bits, that's 640 bytes In total.

16 e @ Vaslki Kalavri | Boston University 2020

Estimating frequencies

e @ Vasiiki Kalavr | Boston University 2020

MVotivating examples

Detect DNS DDoS attacks

* Flooding the resources of the targeted system by sending a large number of query from a
notnet

 (Group queries by their top-level domain and investigate most popular domains

o Alert if we detect many different non-existent subdomains of the same primary domain

Trending topics calculation

* [witter receives around 500 billion tweets per day

 Estimating the frequencies of hashtags and comparing them with yesterday’s frequencies
orovides an indication of what is “trending”

18 e @ Vaslki Kalavri | Boston University 2020

Counting Bloom Filter

 Expand the classical BF with an array of m counters corresponding to
each of the m bits in the filter:

* |Increment the corresponding counter every time an element is added

 Jo delete an element, decrease its corresponding counters and unset the corresponding bit of

the counter falls to O

* A single array of counters for all hash functions increases the collision

porobability

e Counter overestimatior

high-frequency e

emernr

IS almost certain for very large data streams with
ts

19 e @ Vaslki Kalavri | Boston University 2020

The Count-Min Sketch

A space-efticient probabilistic data structure that can be used to
estimate frequencies and heavy hitters in data streams

't was introduced in 2003 by Cormode and Muthukrishnan

't uses a hash table of p arrays of m counters
Elements update different subsets of counters, one per hash table

Many independent trials by using p hash functions with an array of m
counters for each of them

- eY @ Vasiiki Kalavr | Boston University 2020

The Count-Min Sketch

map the universe to the range {1, 2, ..., m}

h,

h,

p pairwise independent hash functions

hy,

p arrays

m counters

21

e @ Vaslki Kalavri | Boston University 2020

Adding an element to the sketch

stream elements x

3[3]1]5]0]o0

s5[8|2[0]0]>

All counters
are initialized
to Os

2|9|7]3]0]5

m counters

for j=1 to p do
1 = hj(x)
Ci,jt+

22

e @ Vaslki Kalavri | Boston University 2020

Estimating frequency

T s
h/ |o|olole|o|3|3]1]|5]o]o]3]8]>2
nl [3]o]o]3]o]s]s|2]ofo|2]9]2]4

762322973‘05850

< m counters

let f: array of length p
for j=1 to p do
i = hj(x)
f[J] = ci,3
return min(£f[1], f[2], .., £[pP])

23

Counters provide the upper
bound for an element’s frequency:

fx) < cjh(x),j =1,2,....,p

Because m << n, there are many
collisions and counters generally
overestimate real frequencies.

The best approximation is not the
average of all counters, but the
minimum.

e @ Vaslki Kalavri | Boston University 2020

Computing top-k

54 e @ Vaslki Kalavri | Boston University 2020

Computing top-k

e Additional to the array of counter, we allocate:

e a counter N of the number of elements seen so far

 aheap X*of up to k potential heavy hitters and their frequency estimations

” eY @ Vasiiki Kalavr | Boston University 2020

Computing top-k

e Additional to the array of counter, we allocate:

e a counter N of the number of elements seen so far

 aheap X*of up to k potential heavy hitters and their frequency estimations

 We use a frequency threshold f*=N/k to decide whether an element is popular

” eY @ Vasiiki Kalavr | Boston University 2020

Computing top-k

e Additional to the array of counter, we allocate:

e a counter N of the number of elements seen so far

 aheap X*of up to k potential heavy hitters and their frequency estimations

 We use a frequency threshold f*=N/k to decide whether an element is popular

 For every element x, we add it to the sketch and then use the updated sketch
to estimate its frequency.

” eY @ Vasiiki Kalavr | Boston University 2020

Computing top-k

Additional to the array of counter, we allocate:

e a counter N of the number of elements seen so far

 aheap X*of up to k potential heavy hitters and their frequency estimations

We use a frequency threshold £*=N/k to decide whether an element is popular

For every element x, we add It to the sketch and then use the updated sketch
to estimate its frequency.

It the estimated frequency is above the threshold:

e Wwe add it to the heap or update its frequency if it is already in the heap

” eY @ Vasiiki Kalavr | Boston University 2020

Computing top-k

Additional to the array of counter, we allocate:

e a counter N of the number of elements seen so far

 aheap X*of up to k potential heavy hitters and their frequency estimations

We use a frequency threshold £*=N/k to decide whether an element is popular

For every element x, we add It to the sketch and then use the updated sketch
to estimate its frequency.

It the estimated frequency is above the threshold:

e Wwe add it to the heap or update its frequency if it is already in the heap

When a popular element’s frequency drops below the threshold, we remove it
from the heap

” eY @ Vasiiki Kalavr | Boston University 2020

Computing top-k

N=0 // number of elements so far
X* = {} // heap of top-k elements

for x 1n input do:
N = N+1
f* = N/k // current frequency threshold
update(x) // add x to the count-min sketch (slide 22)
f = frequency(x) // use sketch to estimate frequency (slide 23)

if £ >= £* then:
X*.add({x, f})
// remove unpopular elements from the heap
for (y, fy) in X* do:
if £, <= f£* then
X* . remove({y, fy})

return X*

- 6@ Vasiiki Kaavr | Boston University 2020

Error and space/time trade-offs

« Query approximation error €
o Error probability o

Guarantee: The estimation error for frequencies will not exceed € - n with
probability 1 — o

* A higher number of hash functions decreases the probability of a bad

| 1
estimate: p = [lng]
| 2.71828
. The recommended number of counters is m = [———]
€

- eY @ Vasiiki Kalavr | Boston University 2020

Space reqguirements

e @ Vasiiki Kalavr | Boston University 2020

Space reqguirements

1
For a standard error of 6 ~% 1 % , we need at least p = [lngl = 5 hash functions.

o7 6@ Vasiiki Kaavr | Boston University 2020

Space reqguirements

|
For a standard error of 6 ~% 1 % , we need at least p = [lngl = 5 hash functions.
Consider a stream of 10 million (n = 1()7) elements and an allowed overestimate of
10
10. Thus, € = — = 107°
107

o7 6@ Vasiiki Kaavr | Boston University 2020

Space reqguirements

1
For a standard error of 6 ~% 1 % , we need at least p = [lngl = 5 hash functions.

Consider a stream of 10 million (n = 1()7) elements and an allowed overestimate of

10 6
10. Thus, € = — = 107°.
107

| 2.71828
The recommended number of counters is m = ~ 2,718,280

10-6

o7 6@ Vasiiki Kaavr | Boston University 2020

Space reqguirements

1

For a standard error of 6 ~% 1 % , we need at least p = [lngl = 5 hash functions.

Consider a stream of 10 million (n = 1()7) elements and an allowed overestimate of

10 6
10. Thus, € = — = 107°.
107

2.71828

The recommended number of counters is m = e ~ 2,718,280

The sketch data structure requires a counter array of size 5 * 2,718,280.

o7 6@ Vasiiki Kaavr | Boston University 2020

Space reqguirements

1
For a standard error of 6 % 1 %, we need at least p = [In—| = 5 hash functions.

0

Consider a stream of 10 million (n = 1()7) elements and an allowed overestimate of

10 6
10. Thus, € = — = 107°.
107

| 2.71828
The recommended number of counters is m = e ~ 2,718,280

The sketch data structure requires a counter array of size 5 * 2,718,280.

Considering 32-bit counters, the count-min sketch requires a total of 54.4MB of
memory.

o7 6@ Vasiiki Kaavr | Boston University 2020

~Further reading

Jure Lescovec, Anand Rajaraman and Jeffrey David Ullman. Mining of Massive
Datasets. http://infolab.stanford.edu/~ullman/mmds/book.pdf

Durand, Marianne, and Philippe Flajolet. Loglog counting of large
cardinalities. European Symposium on Algorithms, 2003.

—-lajolet, Philippe, et al. Hyperloglog: the analysis of a near-optimal cardinality
estimation algorithm. 2007. https://hal.archives-ouvertes.fr/file/index/docid/406166/
filename/FIFuGaMeO7.pdf

Cormode, Graham, and Shan Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms (2005).

Gakhov, Andrii. Probabilistic Data Structures and Algorithms for Big Data
Applications. 2019.

e 6@ Vasiiki Kaavr | Boston University 2020

http://infolab.stanford.edu/~ullman/mmds/book.pdf
https://hal.archives-ouvertes.fr/file/index/docid/406166/filename/FlFuGaMe07.pdf
https://hal.archives-ouvertes.fr/file/index/docid/406166/filename/FlFuGaMe07.pdf

