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How can we count the number of distinct elements seen so far in a stream?

3

Example use-case: Distinct users visiting one or multiple webpages

Naive solution: maintain a hash table

The more different elements we encounter in the 
stream, the more different hash values we shall see.

Convert the stream into a multi-set of uniformly 
distributed random numbers using a hash function.
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Let h be a hash function that maps each stream element into M = log2N bits, 
where N is the domain of input elements: 

 

For each element x, let rank(x) be the number of 0s in the end of h(x): 

• e.g. 
• x1 = 318, h(x1) = 12 or 01100 => rank(x1) = 2 
• x2 = 9013, h(x2) = 24 or 11000 => rank(x2) = 3

h(x) =
M−1

∑
k=0

ik2k = (i0i1 . . . iM−1)2, ik ∈ {0,1}

4
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Let n be the number of distinct elements in the input stream so far 
and let R be the maximum value of rank(.) seen so far.
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Let n be the number of distinct elements in the input stream so far 
and let R be the maximum value of rank(.) seen so far.

̂n = 2R

Claim: The maximum observed rank is a good estimate of log2n. 

In other words, the estimated number of distinct elements is equal to:
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The hash function h hashes x to any of N values with probability 1/N. 

Out of all x we hash: 
• around 50% will have a binary representation that ends in at least one 0:  

• ********0 (the probability of a 0 is 1/2) 
• around 25% will end in at least two 0s: 

• *******00 (1/2 * 1/2) 
• and so on…
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The hash function h hashes x to any of N values with probability 1/N. 

Out of all x we hash: 
• around 50% will have a binary representation that ends in at least one 0:  

• ********0 (the probability of a 0 is 1/2) 
• around 25% will end in at least two 0s: 

• *******00 (1/2 * 1/2) 
• and so on…

If one 0 is the maximum we’ve seen, that indicates 2 distinct elements,  
whereas if two 0s is the maximum we’ve seen, that indicates 4 distinct elements, 
…

It takes 2r hash calls before we encounter a result with r 0s.
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Is this a good estimate?
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The probability that a given h(x) ends in at least r 0s is:

1
2

*
1
2

*
1
2

. . .
1
2

= 2−r

Is this a good estimate?
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The probability that a given h(x) ends in at least r 0s is:

1
2

*
1
2

*
1
2

. . .
1
2

= 2−r

The probability of not seeing a tail with at least r 0s among k elements is:

(1 − 2−r)k

Is this a good estimate?
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The probability that a given h(x) ends in at least r 0s is:

1
2

*
1
2

*
1
2

. . .
1
2

= 2−r

The probability of not seeing a tail with at least r 0s among k elements is:

(1 − 2−r)k

The probability that h(x) ends in less then r 0s

for all k elements

Is this a good estimate?

7
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The probability of not seeing a tail 
with at least r 0s among k elements is (1 − 2−r)k

8



🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The probability of not seeing a tail 
with at least r 0s among k elements is (1 − 2−r)k

We know that (1 − ϵ)1/ϵ = 1/e
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The probability of not seeing a tail 
with at least r 0s among k elements is (1 − 2−r)k

We know that (1 − ϵ)1/ϵ = 1/e

For ϵ = 2−r → (1 − 2−r)k = e−k2−r
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The probability of not seeing a tail 
with at least r 0s among k elements is (1 − 2−r)k

We know that (1 − ϵ)1/ϵ = 1/e

For ϵ = 2−r → (1 − 2−r)k = e−k2−r

• If k ≫ 2r :
k
2r

→ 0 and e−k2−r → 1
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The probability of not seeing a tail 
with at least r 0s among k elements is (1 − 2−r)k

We know that (1 − ϵ)1/ϵ = 1/e

For ϵ = 2−r → (1 − 2−r)k = e−k2−r

• If k ≫ 2r :
k
2r

→ 0 and e−k2−r → 1

• If k ≪ 2r :
k
2r

→ ∞ and e−k2−r → 0
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The probability of not seeing a tail 
with at least r 0s among k elements is (1 − 2−r)k

We know that (1 − ϵ)1/ϵ = 1/e

For ϵ = 2−r → (1 − 2−r)k = e−k2−r

• If k ≫ 2r :
k
2r

→ 0 and e−k2−r → 1

• If k ≪ 2r :
k
2r

→ ∞ and e−k2−r → 0

The estimate 2R cannot be too high or too low.
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Is it good enough?
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If we increase the number of 0s at the end of a hash value by 1, 2R doubles! 
• R = 4, 2R = 16 distinct elements 
• R = 5, 2R = 32 distinct elements 
• R = 6, 2R = 64 distinct elements 
No estimate in between powers of 2!
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If we increase the number of 0s at the end of a hash value by 1, 2R doubles! 
• R = 4, 2R = 16 distinct elements 
• R = 5, 2R = 32 distinct elements 
• R = 6, 2R = 64 distinct elements 
No estimate in between powers of 2!

9

Is it good enough?

To get a better estimate, we need to use multiple hash functions and 
combine their estimates: 
• Using many hash functions for a high-rate stream is expensive 
• Finding many random and independent hash functions is difficult
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We split the input stream into m = 2p sub-streams S0, S1, …, Sm-1 

For every element x, we compute h(x) and use the p first bits of the M-bit hash 
value to select a sub-stream and the next M-p bits to compute the rank(.):
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We split the input stream into m = 2p sub-streams S0, S1, …, Sm-1 

For every element x, we compute h(x) and use the p first bits of the M-bit hash 
value to select a sub-stream and the next M-p bits to compute the rank(.):

Stochastic averaging
Use one hash function to simulate many by 
splitting the hash value into two parts

h(x) = (i0i1 . . . iM−1)2, ik ∈ {0,1}
j = (i0i1 . . . ip−1)2

For we select one of m counters

COUNT[j], where
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Stochastic averaging: example
Let M = 5, p = 2 and a hash function h5 that maps elements to a binary 
representation of length 5. 

We split the stream into m = 2p = 4 sub-streams.  

Consider the input elements {5, 14, 5, 2, 8, 1, …}
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Let M = 5, p = 2 and a hash function h5 that maps elements to a binary 
representation of length 5. 
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Consider the input elements {5, 14, 5, 2, 8, 1, …}
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• x3=5,     h5(5) = 00101 
• x4=2,     h5(2) = 01000 
• x5=8,     h5(8) = 00100 
• x6=1,     h5(1) = 11010
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Stochastic averaging: example
Let M = 5, p = 2 and a hash function h5 that maps elements to a binary 
representation of length 5. 
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Stochastic averaging: example
Let M = 5, p = 2 and a hash function h5 that maps elements to a binary 
representation of length 5. 

We split the stream into m = 2p = 4 sub-streams.  
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Stochastic averaging: example
Let M = 5, p = 2 and a hash function h5 that maps elements to a binary 
representation of length 5. 

We split the stream into m = 2p = 4 sub-streams.  

Consider the input elements {5, 14, 5, 2, 8, 1, …}

Substream Address Counter
S0 00
S1 01
S2 10
S3 11

• x1=5,     h5(5) = 00101 
• x2=14,   h5(14) = 10110 
• x3=5,     h5(5) = 00101 
• x4=2,     h5(2) = 01000 
• x5=8,     h5(8) = 00100 
• x6=1,     h5(1) = 11010

1

1

3
2
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LogLog algorithm
Input: stream S, array of m counters, hash fiction h
Output: cardinality of S

for j=0 to m-1 do:
COUNT[j] = 0

for x in S do:
  i = h(x)
  j = getLeftBits(i, p)
  r = rank(getRightBits(i, M-p))
  COUNT[j] = max(COUNT[j], r)
  
  R = average(COUNT) // average of all j counters
  output a * m * 2R // a is a constant, a  0.39701, for m  64.≈ ≥

12
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Why LogLog?

Let’s assume we want to be able to count up to n distinct elements. 

We need a hash function that maps each input element to log2n bits. 

Then, each counter needs to be able to count up to log2(log2n) 0s.

13
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Combining estimates
• Average won’t work: The expected value of 2R is too large. 
• Median won’t work: it is always a power of 2, thus, if the correct 

estimate is between two powers of 2, we won’t get a good estimate.

Solution: harmonic mean (HyperLogLog)

̂n = am ⋅ m2 ⋅ (
m−1

∑
j=0

2−COUNT[ j])
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The standard error of the LogLog algorithm is inversely related to the 
number of counters m:

Standard error

δ ≈
1.3

m

For m = 256, the error is about 8% 

For m = 1024, the error decreases to 4%



🤧😷🤒 Vasiliki Kalavri | Boston University 202016

Space requirements
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As we read the stream, it is not necessary to store any elements seen:

• Assume we want to count cardinalities up to 1 billion or 230 with an 
accuracy of 4%.

• The hash value needs to map elements to M = log2(230) = 30 bits.
• We need 1024 counters, so m = 210 and we need p = log2m = 10 

bits for routing.
• Each counter needs to be able to count up to 20 0s, so we need to 

allocate log220 = 4.32 bits per counter.
• If we round up to 5 bits, that’s 640 bytes in total.

Space requirements
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Estimating frequencies

17
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Detect DNS DDoS attacks 
• Flooding the resources of the targeted system by sending a large number of query from a 

botnet 
• Group queries by their top-level domain and investigate most popular domains 
• Alert if we detect many different non-existent subdomains of the same primary domain 

Trending topics calculation 
• Twitter receives around 500 billion tweets per day 
• Estimating the frequencies of hashtags and comparing them with yesterday’s frequencies 

provides an indication of what is “trending”

Motivating examples
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• Expand the classical BF with an array of m counters corresponding to 
each of the m bits in the filter: 

• Increment the corresponding counter every time an element is added 
• To delete an element, decrease its corresponding counters and unset the corresponding bit of 

the counter falls to 0 

• A single array of counters for all hash functions increases the collision 
probability 

• Counter overestimation is almost certain for very large data streams with 
high-frequency elements

Counting Bloom Filter
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• A space-efficient probabilistic data structure that can be used to 
estimate frequencies and heavy hitters in data streams 

• It was introduced in 2003 by Cormode and Muthukrishnan 

• It uses a hash table of p arrays of m counters 

• Elements update different subsets of counters, one per hash table 

• Many independent trials by using p hash functions with an array of m 
counters for each of them

The Count-Min Sketch
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The Count-Min Sketch

m counters

h1 h2 hp…

p pairwise independent hash functions

…

p arrays

map the universe to the range {1, 2, …, m}
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for j=1 to p do
  i = hj(x)
  ci,j++

Adding an element to the sketch

stream elements x

All counters 
are initialized 

to 0s

0 0 0 6 9 3 3 1 5 0 0 3 8 2 7 9

m counters

h1

h2

hp

3 0 0 3 0 5 8 2 0 0 2 9 2 4 5 2

7 6 2 3 2 2 9 7 3 0 5 8 5 0 9 0

…
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Estimating frequency
0 0 0 6 9 3 3 1 5 0 0 3 8 2 7 9

m counters

h1

h2

hp

3 0 0 3 0 5 8 2 0 0 2 9 2 4 5 2

7 6 2 3 2 2 9 7 3 0 5 8 5 0 9 0

…

Counters provide the upper 
bound for an element’s frequency: 

f(x) ≤ ch(x)
j , j = 1,2,...,p

Because m << n, there are many 
collisions and counters generally 
overestimate real frequencies.

The best approximation is not the 
average of all counters, but the 
minimum.

let f: array of length p
for j=1 to p do
  i = hj(x)
  f[j] = ci,j
return min(f[1], f[2], …, f[p])
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Computing top-k
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• Additional to the array of counter, we allocate: 
• a counter N of the number of elements seen so far 
• a heap X* of up to k potential heavy hitters and their frequency estimations

Computing top-k
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• We use a frequency threshold f*=N/k to decide whether an element is popular
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• Additional to the array of counter, we allocate: 
• a counter N of the number of elements seen so far 
• a heap X* of up to k potential heavy hitters and their frequency estimations

• We use a frequency threshold f*=N/k to decide whether an element is popular

• For every element x, we add it to the sketch and then use the updated sketch 
to estimate its frequency.

• If the estimated frequency is above the threshold: 
• we add it to the heap or update its frequency if it is already in the heap

Computing top-k
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• Additional to the array of counter, we allocate: 
• a counter N of the number of elements seen so far 
• a heap X* of up to k potential heavy hitters and their frequency estimations

• We use a frequency threshold f*=N/k to decide whether an element is popular

• For every element x, we add it to the sketch and then use the updated sketch 
to estimate its frequency.

• If the estimated frequency is above the threshold: 
• we add it to the heap or update its frequency if it is already in the heap

• When a popular element’s frequency drops below the threshold, we remove it 
from the heap

Computing top-k
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N=0 // number of elements so far
X* = {} // heap of top-k elements

for x in input do:
  N = N+1
  f* = N/k // current frequency threshold
  update(x) // add x to the count-min sketch (slide 22)
  f = frequency(x) // use sketch to estimate frequency (slide 23)
  
  if f >= f* then:
    X*.add({x, f})
  // remove unpopular elements from the heap
  for (y, fy) in X* do:
    if fy <= f* then
      X*.remove({y, fy})  

return X*

Computing top-k
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• Query approximation error  

• Error probability  

Guarantee: The estimation error for frequencies will not exceed  with 
probability  

• A higher number of hash functions decreases the probability of a bad 
estimate:  

• The recommended number of counters is 

ϵ

δ

ϵ ⋅ n
1 − δ

p = ⌈ln
1
δ

⌉

m = ⌈
2.71828

ϵ
⌉

Error and space/time trade-offs
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Space requirements
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For a standard error of , we need at least  hash functions.δ ≈ 1 % p = ⌈ln
1
δ

⌉ = 5

Space requirements
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For a standard error of , we need at least  hash functions.δ ≈ 1 % p = ⌈ln
1
δ
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Consider a stream of 10 million ( ) elements and an allowed overestimate of 

10. Thus, .

n = 107

ϵ =
10
107

= 10−6

Space requirements
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ϵ =
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10−6
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For a standard error of , we need at least  hash functions.δ ≈ 1 % p = ⌈ln
1
δ

⌉ = 5

Consider a stream of 10 million ( ) elements and an allowed overestimate of 

10. Thus, .

n = 107

ϵ =
10
107

= 10−6

The recommended number of counters is .m =
2.71828

10−6
≈ 2,718,280

The sketch data structure requires a counter array of size 5 * 2,718,280.

Considering 32-bit counters, the count-min sketch requires a total of 54.4MB of 
memory.

Space requirements
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