
🤧😷🤒 Vasiliki Kalavri | Boston University 2020

CS 591 K1:
Data Stream Processing and Analytics

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

Spring 2020

4/23: Cardinality and frequency estimation

mailto:vkalavri@bu.edu

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Counting distinct
elements

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

How can we count the number of distinct elements seen so far in a stream?

3

Example use-case: Distinct users visiting one or multiple webpages

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

How can we count the number of distinct elements seen so far in a stream?

3

Example use-case: Distinct users visiting one or multiple webpages

Naive solution: maintain a hash table

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

How can we count the number of distinct elements seen so far in a stream?

3

Example use-case: Distinct users visiting one or multiple webpages

Naive solution: maintain a hash table

Convert the stream into a multi-set of uniformly
distributed random numbers using a hash function.

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

How can we count the number of distinct elements seen so far in a stream?

3

Example use-case: Distinct users visiting one or multiple webpages

Naive solution: maintain a hash table

The more different elements we encounter in the
stream, the more different hash values we shall see.

Convert the stream into a multi-set of uniformly
distributed random numbers using a hash function.

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Let h be a hash function that maps each stream element into M = log2N bits,
where N is the domain of input elements:

For each element x, let rank(x) be the number of 0s in the end of h(x):

• e.g.
• x1 = 318, h(x1) = 12 or 01100 => rank(x1) = 2
• x2 = 9013, h(x2) = 24 or 11000 => rank(x2) = 3

h(x) =
M−1

∑
k=0

ik2k = (i0i1 . . . iM−1)2, ik ∈ {0,1}

4

🤧😷🤒 Vasiliki Kalavri | Boston University 20205

Let n be the number of distinct elements in the input stream so far
and let R be the maximum value of rank(.) seen so far.

🤧😷🤒 Vasiliki Kalavri | Boston University 20205

Let n be the number of distinct elements in the input stream so far
and let R be the maximum value of rank(.) seen so far.

̂n = 2R

Claim: The maximum observed rank is a good estimate of log2n.

In other words, the estimated number of distinct elements is equal to:

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The hash function h hashes x to any of N values with probability 1/N.

Out of all x we hash:
• around 50% will have a binary representation that ends in at least one 0:

• ********0 (the probability of a 0 is 1/2)
• around 25% will end in at least two 0s:

• *******00 (1/2 * 1/2)
• and so on…

6

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The hash function h hashes x to any of N values with probability 1/N.

Out of all x we hash:
• around 50% will have a binary representation that ends in at least one 0:

• ********0 (the probability of a 0 is 1/2)
• around 25% will end in at least two 0s:

• *******00 (1/2 * 1/2)
• and so on…

If one 0 is the maximum we’ve seen, that indicates 2 distinct elements,
whereas if two 0s is the maximum we’ve seen, that indicates 4 distinct elements,
…

6

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The hash function h hashes x to any of N values with probability 1/N.

Out of all x we hash:
• around 50% will have a binary representation that ends in at least one 0:

• ********0 (the probability of a 0 is 1/2)
• around 25% will end in at least two 0s:

• *******00 (1/2 * 1/2)
• and so on…

If one 0 is the maximum we’ve seen, that indicates 2 distinct elements,
whereas if two 0s is the maximum we’ve seen, that indicates 4 distinct elements,
…

It takes 2r hash calls before we encounter a result with r 0s.

6

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Is this a good estimate?

7

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The probability that a given h(x) ends in at least r 0s is:

1
2

*
1
2

*
1
2

. . .
1
2

= 2−r

Is this a good estimate?

7

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The probability that a given h(x) ends in at least r 0s is:

1
2

*
1
2

*
1
2

. . .
1
2

= 2−r

The probability of not seeing a tail with at least r 0s among k elements is:

(1 − 2−r)k

Is this a good estimate?

7

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The probability that a given h(x) ends in at least r 0s is:

1
2

*
1
2

*
1
2

. . .
1
2

= 2−r

The probability of not seeing a tail with at least r 0s among k elements is:

(1 − 2−r)k

The probability that h(x) ends in less then r 0s

Is this a good estimate?

7

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The probability that a given h(x) ends in at least r 0s is:

1
2

*
1
2

*
1
2

. . .
1
2

= 2−r

The probability of not seeing a tail with at least r 0s among k elements is:

(1 − 2−r)k

The probability that h(x) ends in less then r 0s

for all k elements

Is this a good estimate?

7

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The probability of not seeing a tail
with at least r 0s among k elements is (1 − 2−r)k

8

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The probability of not seeing a tail
with at least r 0s among k elements is (1 − 2−r)k

We know that (1 − ϵ)1/ϵ = 1/e

8

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The probability of not seeing a tail
with at least r 0s among k elements is (1 − 2−r)k

We know that (1 − ϵ)1/ϵ = 1/e

For ϵ = 2−r → (1 − 2−r)k = e−k2−r

8

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The probability of not seeing a tail
with at least r 0s among k elements is (1 − 2−r)k

We know that (1 − ϵ)1/ϵ = 1/e

For ϵ = 2−r → (1 − 2−r)k = e−k2−r

• If k ≫ 2r :
k
2r

→ 0 and e−k2−r → 1

8

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The probability of not seeing a tail
with at least r 0s among k elements is (1 − 2−r)k

We know that (1 − ϵ)1/ϵ = 1/e

For ϵ = 2−r → (1 − 2−r)k = e−k2−r

• If k ≫ 2r :
k
2r

→ 0 and e−k2−r → 1

• If k ≪ 2r :
k
2r

→ ∞ and e−k2−r → 0

8

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

The probability of not seeing a tail
with at least r 0s among k elements is (1 − 2−r)k

We know that (1 − ϵ)1/ϵ = 1/e

For ϵ = 2−r → (1 − 2−r)k = e−k2−r

• If k ≫ 2r :
k
2r

→ 0 and e−k2−r → 1

• If k ≪ 2r :
k
2r

→ ∞ and e−k2−r → 0

The estimate 2R cannot be too high or too low.

8

🤧😷🤒 Vasiliki Kalavri | Boston University 20209

Is it good enough?

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

If we increase the number of 0s at the end of a hash value by 1, 2R doubles!
• R = 4, 2R = 16 distinct elements
• R = 5, 2R = 32 distinct elements
• R = 6, 2R = 64 distinct elements
No estimate in between powers of 2!

9

Is it good enough?

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

If we increase the number of 0s at the end of a hash value by 1, 2R doubles!
• R = 4, 2R = 16 distinct elements
• R = 5, 2R = 32 distinct elements
• R = 6, 2R = 64 distinct elements
No estimate in between powers of 2!

9

Is it good enough?

To get a better estimate, we need to use multiple hash functions and
combine their estimates:
• Using many hash functions for a high-rate stream is expensive
• Finding many random and independent hash functions is difficult

🤧😷🤒 Vasiliki Kalavri | Boston University 202010

Stochastic averaging

🤧😷🤒 Vasiliki Kalavri | Boston University 202010

Stochastic averaging
Use one hash function to simulate many by
splitting the hash value into two parts

🤧😷🤒 Vasiliki Kalavri | Boston University 202010

We split the input stream into m = 2p sub-streams S0, S1, …, Sm-1

For every element x, we compute h(x) and use the p first bits of the M-bit hash
value to select a sub-stream and the next M-p bits to compute the rank(.):

Stochastic averaging
Use one hash function to simulate many by
splitting the hash value into two parts

🤧😷🤒 Vasiliki Kalavri | Boston University 202010

We split the input stream into m = 2p sub-streams S0, S1, …, Sm-1

For every element x, we compute h(x) and use the p first bits of the M-bit hash
value to select a sub-stream and the next M-p bits to compute the rank(.):

Stochastic averaging
Use one hash function to simulate many by
splitting the hash value into two parts

h(x) = (i0i1 . . . iM−1)2, ik ∈ {0,1}
j = (i0i1 . . . ip−1)2

For we select one of m counters

COUNT[j], where

🤧😷🤒 Vasiliki Kalavri | Boston University 202011

Stochastic averaging: example
Let M = 5, p = 2 and a hash function h5 that maps elements to a binary
representation of length 5.

We split the stream into m = 2p = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, …}

🤧😷🤒 Vasiliki Kalavri | Boston University 202011

Stochastic averaging: example
Let M = 5, p = 2 and a hash function h5 that maps elements to a binary
representation of length 5.

We split the stream into m = 2p = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, …}

Substream Address Counter
S0 00
S1 01
S2 10
S3 11

🤧😷🤒 Vasiliki Kalavri | Boston University 202011

Stochastic averaging: example
Let M = 5, p = 2 and a hash function h5 that maps elements to a binary
representation of length 5.

We split the stream into m = 2p = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, …}

Substream Address Counter
S0 00
S1 01
S2 10
S3 11

• x1=5, h5(5) = 00101
• x2=14, h5(14) = 10110
• x3=5, h5(5) = 00101
• x4=2, h5(2) = 01000
• x5=8, h5(8) = 00100
• x6=1, h5(1) = 11010

🤧😷🤒 Vasiliki Kalavri | Boston University 202011

Stochastic averaging: example
Let M = 5, p = 2 and a hash function h5 that maps elements to a binary
representation of length 5.

We split the stream into m = 2p = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, …}

Substream Address Counter
S0 00
S1 01
S2 10
S3 11

• x1=5, h5(5) = 00101
• x2=14, h5(14) = 10110
• x3=5, h5(5) = 00101
• x4=2, h5(2) = 01000
• x5=8, h5(8) = 00100
• x6=1, h5(1) = 11010

0

🤧😷🤒 Vasiliki Kalavri | Boston University 202011

Stochastic averaging: example
Let M = 5, p = 2 and a hash function h5 that maps elements to a binary
representation of length 5.

We split the stream into m = 2p = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, …}

Substream Address Counter
S0 00
S1 01
S2 10
S3 11

• x1=5, h5(5) = 00101
• x2=14, h5(14) = 10110
• x3=5, h5(5) = 00101
• x4=2, h5(2) = 01000
• x5=8, h5(8) = 00100
• x6=1, h5(1) = 11010

0

1

🤧😷🤒 Vasiliki Kalavri | Boston University 202011

Stochastic averaging: example
Let M = 5, p = 2 and a hash function h5 that maps elements to a binary
representation of length 5.

We split the stream into m = 2p = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, …}

Substream Address Counter
S0 00
S1 01
S2 10
S3 11

• x1=5, h5(5) = 00101
• x2=14, h5(14) = 10110
• x3=5, h5(5) = 00101
• x4=2, h5(2) = 01000
• x5=8, h5(8) = 00100
• x6=1, h5(1) = 11010

1

1

3
2

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

LogLog algorithm
Input: stream S, array of m counters, hash fiction h
Output: cardinality of S

for j=0 to m-1 do:
COUNT[j] = 0

for x in S do:
 i = h(x)
 j = getLeftBits(i, p)
 r = rank(getRightBits(i, M-p))
 COUNT[j] = max(COUNT[j], r)

 R = average(COUNT) // average of all j counters
 output a * m * 2R // a is a constant, a 0.39701, for m 64.≈ ≥

12

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Why LogLog?

Let’s assume we want to be able to count up to n distinct elements.

We need a hash function that maps each input element to log2n bits.

Then, each counter needs to be able to count up to log2(log2n) 0s.

13

🤧😷🤒 Vasiliki Kalavri | Boston University 202014

Combining estimates
• Average won’t work: The expected value of 2R is too large.
• Median won’t work: it is always a power of 2, thus, if the correct

estimate is between two powers of 2, we won’t get a good estimate.

Solution: harmonic mean (HyperLogLog)

̂n = am ⋅ m2 ⋅ (
m−1

∑
j=0

2−COUNT[j])

🤧😷🤒 Vasiliki Kalavri | Boston University 202015

The standard error of the LogLog algorithm is inversely related to the
number of counters m:

Standard error

δ ≈
1.3

m

For m = 256, the error is about 8%

For m = 1024, the error decreases to 4%

🤧😷🤒 Vasiliki Kalavri | Boston University 202016

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 202016

As we read the stream, it is not necessary to store any elements seen:

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 202016

As we read the stream, it is not necessary to store any elements seen:

• Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 202016

As we read the stream, it is not necessary to store any elements seen:

• Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

• The hash value needs to map elements to M = log2(230) = 30 bits.

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 202016

As we read the stream, it is not necessary to store any elements seen:

• Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

• The hash value needs to map elements to M = log2(230) = 30 bits.
• We need 1024 counters, so m = 210 and we need p = log2m = 10

bits for routing.

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 202016

As we read the stream, it is not necessary to store any elements seen:

• Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

• The hash value needs to map elements to M = log2(230) = 30 bits.
• We need 1024 counters, so m = 210 and we need p = log2m = 10

bits for routing.
• Each counter needs to be able to count up to 20 0s, so we need to

allocate log220 = 4.32 bits per counter.

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 202016

As we read the stream, it is not necessary to store any elements seen:

• Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

• The hash value needs to map elements to M = log2(230) = 30 bits.
• We need 1024 counters, so m = 210 and we need p = log2m = 10

bits for routing.
• Each counter needs to be able to count up to 20 0s, so we need to

allocate log220 = 4.32 bits per counter.
• If we round up to 5 bits, that’s 640 bytes in total.

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Estimating frequencies

17

🤧😷🤒 Vasiliki Kalavri | Boston University 202018

Detect DNS DDoS attacks
• Flooding the resources of the targeted system by sending a large number of query from a

botnet
• Group queries by their top-level domain and investigate most popular domains
• Alert if we detect many different non-existent subdomains of the same primary domain

Trending topics calculation
• Twitter receives around 500 billion tweets per day
• Estimating the frequencies of hashtags and comparing them with yesterday’s frequencies

provides an indication of what is “trending”

Motivating examples

🤧😷🤒 Vasiliki Kalavri | Boston University 202019

• Expand the classical BF with an array of m counters corresponding to
each of the m bits in the filter:

• Increment the corresponding counter every time an element is added
• To delete an element, decrease its corresponding counters and unset the corresponding bit of

the counter falls to 0

• A single array of counters for all hash functions increases the collision
probability

• Counter overestimation is almost certain for very large data streams with
high-frequency elements

Counting Bloom Filter

🤧😷🤒 Vasiliki Kalavri | Boston University 202020

• A space-efficient probabilistic data structure that can be used to
estimate frequencies and heavy hitters in data streams

• It was introduced in 2003 by Cormode and Muthukrishnan

• It uses a hash table of p arrays of m counters

• Elements update different subsets of counters, one per hash table

• Many independent trials by using p hash functions with an array of m
counters for each of them

The Count-Min Sketch

🤧😷🤒 Vasiliki Kalavri | Boston University 202021

The Count-Min Sketch

m counters

h1 h2 hp…

p pairwise independent hash functions

…

p arrays

map the universe to the range {1, 2, …, m}

🤧😷🤒 Vasiliki Kalavri | Boston University 202022

for j=1 to p do
 i = hj(x)
 ci,j++

Adding an element to the sketch

stream elements x

All counters
are initialized

to 0s

0 0 0 6 9 3 3 1 5 0 0 3 8 2 7 9

m counters

h1

h2

hp

3 0 0 3 0 5 8 2 0 0 2 9 2 4 5 2

7 6 2 3 2 2 9 7 3 0 5 8 5 0 9 0

…

🤧😷🤒 Vasiliki Kalavri | Boston University 202023

Estimating frequency
0 0 0 6 9 3 3 1 5 0 0 3 8 2 7 9

m counters

h1

h2

hp

3 0 0 3 0 5 8 2 0 0 2 9 2 4 5 2

7 6 2 3 2 2 9 7 3 0 5 8 5 0 9 0

…

Counters provide the upper
bound for an element’s frequency:

f(x) ≤ ch(x)
j , j = 1,2,...,p

Because m << n, there are many
collisions and counters generally
overestimate real frequencies.

The best approximation is not the
average of all counters, but the
minimum.

let f: array of length p
for j=1 to p do
 i = hj(x)
 f[j] = ci,j
return min(f[1], f[2], …, f[p])

🤧😷🤒 Vasiliki Kalavri | Boston University 202024

Computing top-k

🤧😷🤒 Vasiliki Kalavri | Boston University 202024

• Additional to the array of counter, we allocate:
• a counter N of the number of elements seen so far
• a heap X* of up to k potential heavy hitters and their frequency estimations

Computing top-k

🤧😷🤒 Vasiliki Kalavri | Boston University 202024

• Additional to the array of counter, we allocate:
• a counter N of the number of elements seen so far
• a heap X* of up to k potential heavy hitters and their frequency estimations

• We use a frequency threshold f*=N/k to decide whether an element is popular

Computing top-k

🤧😷🤒 Vasiliki Kalavri | Boston University 202024

• Additional to the array of counter, we allocate:
• a counter N of the number of elements seen so far
• a heap X* of up to k potential heavy hitters and their frequency estimations

• We use a frequency threshold f*=N/k to decide whether an element is popular

• For every element x, we add it to the sketch and then use the updated sketch
to estimate its frequency.

Computing top-k

🤧😷🤒 Vasiliki Kalavri | Boston University 202024

• Additional to the array of counter, we allocate:
• a counter N of the number of elements seen so far
• a heap X* of up to k potential heavy hitters and their frequency estimations

• We use a frequency threshold f*=N/k to decide whether an element is popular

• For every element x, we add it to the sketch and then use the updated sketch
to estimate its frequency.

• If the estimated frequency is above the threshold:
• we add it to the heap or update its frequency if it is already in the heap

Computing top-k

🤧😷🤒 Vasiliki Kalavri | Boston University 202024

• Additional to the array of counter, we allocate:
• a counter N of the number of elements seen so far
• a heap X* of up to k potential heavy hitters and their frequency estimations

• We use a frequency threshold f*=N/k to decide whether an element is popular

• For every element x, we add it to the sketch and then use the updated sketch
to estimate its frequency.

• If the estimated frequency is above the threshold:
• we add it to the heap or update its frequency if it is already in the heap

• When a popular element’s frequency drops below the threshold, we remove it
from the heap

Computing top-k

🤧😷🤒 Vasiliki Kalavri | Boston University 202025

N=0 // number of elements so far
X* = {} // heap of top-k elements

for x in input do:
 N = N+1
 f* = N/k // current frequency threshold
 update(x) // add x to the count-min sketch (slide 22)
 f = frequency(x) // use sketch to estimate frequency (slide 23)

 if f >= f* then:
 X*.add({x, f})
 // remove unpopular elements from the heap
 for (y, fy) in X* do:
 if fy <= f* then
 X*.remove({y, fy})

return X*

Computing top-k

🤧😷🤒 Vasiliki Kalavri | Boston University 202026

• Query approximation error

• Error probability

Guarantee: The estimation error for frequencies will not exceed with
probability

• A higher number of hash functions decreases the probability of a bad
estimate:

• The recommended number of counters is

ϵ

δ

ϵ ⋅ n
1 − δ

p = ⌈ln
1
δ

⌉

m = ⌈
2.71828

ϵ
⌉

Error and space/time trade-offs

🤧😷🤒 Vasiliki Kalavri | Boston University 202027

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 202027

For a standard error of , we need at least hash functions.δ ≈ 1 % p = ⌈ln
1
δ

⌉ = 5

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 202027

For a standard error of , we need at least hash functions.δ ≈ 1 % p = ⌈ln
1
δ

⌉ = 5

Consider a stream of 10 million () elements and an allowed overestimate of

10. Thus, .

n = 107

ϵ =
10
107

= 10−6

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 202027

For a standard error of , we need at least hash functions.δ ≈ 1 % p = ⌈ln
1
δ

⌉ = 5

Consider a stream of 10 million () elements and an allowed overestimate of

10. Thus, .

n = 107

ϵ =
10
107

= 10−6

The recommended number of counters is .m =
2.71828

10−6
≈ 2,718,280

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 202027

For a standard error of , we need at least hash functions.δ ≈ 1 % p = ⌈ln
1
δ

⌉ = 5

Consider a stream of 10 million () elements and an allowed overestimate of

10. Thus, .

n = 107

ϵ =
10
107

= 10−6

The recommended number of counters is .m =
2.71828

10−6
≈ 2,718,280

The sketch data structure requires a counter array of size 5 * 2,718,280.

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 202027

For a standard error of , we need at least hash functions.δ ≈ 1 % p = ⌈ln
1
δ

⌉ = 5

Consider a stream of 10 million () elements and an allowed overestimate of

10. Thus, .

n = 107

ϵ =
10
107

= 10−6

The recommended number of counters is .m =
2.71828

10−6
≈ 2,718,280

The sketch data structure requires a counter array of size 5 * 2,718,280.

Considering 32-bit counters, the count-min sketch requires a total of 54.4MB of
memory.

Space requirements

🤧😷🤒 Vasiliki Kalavri | Boston University 202028

• Jure Lescovec, Anand Rajaraman and Jeffrey David Ullman. Mining of Massive
Datasets. http://infolab.stanford.edu/~ullman/mmds/book.pdf

• Durand, Marianne, and Philippe Flajolet. Loglog counting of large
cardinalities. European Symposium on Algorithms, 2003.

• Flajolet, Philippe, et al. Hyperloglog: the analysis of a near-optimal cardinality
estimation algorithm. 2007. https://hal.archives-ouvertes.fr/file/index/docid/406166/
filename/FlFuGaMe07.pdf

• Cormode, Graham, and Shan Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms (2005).

• Gakhov, Andrii. Probabilistic Data Structures and Algorithms for Big Data
Applications. 2019.

Further reading

http://infolab.stanford.edu/~ullman/mmds/book.pdf
https://hal.archives-ouvertes.fr/file/index/docid/406166/filename/FlFuGaMe07.pdf
https://hal.archives-ouvertes.fr/file/index/docid/406166/filename/FlFuGaMe07.pdf

