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How can we count the number of distinct elements seen so far in a stream?

Example use-case: Distinct users visiting one or multiple webpages
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How can we count the number of distinct elements seen so far in a stream?

Example use-case: Distinct users visiting one or multiple webpages

Nailve solution: maintain a hash table

= (Convert the stream into a multi-set of uniformly
distributed random numbers using a hash function.

The more different elements we encounter in the
stream, the more ditfferent hash values we shall see.
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Let h be a hash function that maps each stream element into M = log.N Dbits,
where N Is the domain of input elements:

M—1

k=0

For each element x, let rank(x) be the number of 0s in the end of h(x):

¢ e.q.
¢ X1 = 318, h(XI) — 12 or 01 100 => I‘ank(XI) — 2
* X, = 9013, h(Xz) — 24 or 11000 => rank(Xz) = 3
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Let n be the number of distinct elements in the Inp

and let R be

he maximum value of rank() seen Sso f

Ut stream so far
ar.
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Let n be the number of distinct elements in the input stream so far
and let R be the maximum value of rank() seen so far.

Claim: The maximum observed rank is a good estimate of log,n.

In other words, the estimated number of distinct elements is equal to:

A=2"
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The hash function h hashes x to any of N values with probability 7/V.

Out of all x we hash:
e around 50% will have a binary representation that ends in at least one O:
o XX (the probability of a O is 1/2)
e around 25% will end In at least two 0s:
o FFFFEFO0 (1/2 * 1/2)
* and soon...
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The hash function h hashes x to any of N values with probability 7/V.

Out of all x we hash:
e around 50% will have a binary representation that ends in at least one O:
o XX (the probability of a O is 1/2)
e around 25% will end In at least two 0s:
o FFFFEFO0 (1/2 * 1/2)
* and soon...

[f one 0 is the maximum we’'ve seen, that indicates 2 distinct elements,
whereas If two 0s is the maximum we’ve seen, that indicates 4 distinct elements,
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The hash function h hashes x to any of N values with probability 7/V.

Out of all x we hash:
e around 50% will have a binary representation that ends in at least one O:
o XX (the probability of a O is 1/2)
e around 25% will end In at least two 0s:
o FFFFEFO0 (1/2 * 1/2)
* and soon...

[f one 0 is the maximum we’'ve seen, that indicates 2 distinct elements,
whereas If two 0s is the maximum we’ve seen, that indicates 4 distinct elements,

It takes 2r hash calls before we encounter a result with r Os.
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s this a good estimate”
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s this a good estimate”

The probability that a given h(x) ends in at least r Os Is:

1 1.1 1
— kR =0
2 2 27772
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The probability that a given h(x) ends In at least r Os Is:
1 1 1 1
—F_F— = =27
2 2 2 2
The probabillity of not seeing a tail with at least »r Os among k elements is:

(1 =27F
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1 1.1 1
— kR =0
2 2 27772

The probabillity of not seeing a tail with at least »r Os among k elements is:
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s this a good estimate”

The probability that a given h(x) ends in at least r Os Is:

1 1.1 1
— kR =0
2 2 27772

The probabillity of not seeing a tail with at least »r Os among k elements is:

(L = 2P ranxemens

The probability that h(x) ends in less then r Os
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The probabillity of not seeing a tall
with at least r Os among k elements is (1 — 27
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The probabillity of not seeing a tall
with at least r Os among k elements is (1 — 27

We know that (1 — e)V¢ = 1/e
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The probabillity of not seeing a tall
with at least r Os among k elements is (1 — 27

We know that (1 — e)V¢ = 1/e

Fore =27 — (1 =27 =%
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The probabillity of not seeing a tall
with at least r Os among k elements is (1 — 27

We know that (1 — e)V¢ = 1/e

Fore =27 — (1 =27 =%

o |If k> -£—>()ande_k2_r—>1

o
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The probabillity of not seeing a tall
with at least r Os among k elements is (1 — 27

We know that (1 — e)V¢ = 1/e

Fore =27 — (1 =27 =%

o |If k> ;£—>()ande_k2_r—>1
2r
e If kK2 :2£—>ooande_k2_r—>0
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The probabillity of not seeing a tall
with at least r Os among k elements is (1 — 27

We know that (1 — e)V¢ = 1/e

Fore =27 — (1 =2k =¢e %"

o |If k> ;£—>()ande_k2_r—>1
2r
e If kK2 :2£—>ooande_k2_r—>0

The estimate 2R cannot be too high or too low.
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s It good enough®
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s It good enough®

It we increase the number of Os at the end of a hash value by 1, 2R doubles!
e R =4 2R =106 distinct elements

e R =5, 2k =32 distinct elements

e R =0, 2R = 64 distinct elements

No estimate in between powers of 2!
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s It good enough®

It we increase the number of Os at the end of a hash value by 1, 2R doubles!
e R =4 2R =106 distinct elements

e R =5, 2k =32 distinct elements

e R =0, 2R = 64 distinct elements

No estimate in between powers of 2!

To get a better estimate, we need to use multiple hash functions and
combine their estimates:

e Using many hash functions for a high-rate stream is expensive
* Finding many random and independent hash functions is difficult
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Stochastic averaging
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Stochastic averaging

\ ¢
- = Use one hash function to simulate many by
o Yf ¢ splitting the hash value into two parts
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Stochastic averaging

\ ¢
- = Use one hash function to simulate many by
o Yf ¢ splitting the hash value into two parts

We split the Input stream Into m = 2P sub-streams So, Sy, ..., Sm

For every element x, we compute h(x) and use the p first bits of the M-bit hash
value to select a sub-stream and the next M-p bits to compute the rank(.):
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Stochastic averaging

\ L 4
- = Use one hash function to simulate many by
o Yf ¢ splitting the hash value into two parts

We split the input stream into m = 2P sub-streams So, Sy, ..., Sm

For every element x, we compute h(x) and use the p first bits of the M-bit hash
value to select a sub-stream and the next M-p bits to compute the rank(.):

For h(x) = (igiy ... 4y_1)y 1, € {0,1} we select one of m counters

COUNTYj], where J = (gij---1,_1)>
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Stochastic averaging: example

Let M =5, p=2 and a hash function h; that maps elements to a binary
representation of length 5.

We split the stream Into m = 2P = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, ...}
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Stochastic averaging: example

Let M =5, p=2 and a hash function h; that maps elements to a binary
representation of length 5.

We split the stream Into m = 2P = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, ...}

Substream Address Counter
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Stochastic averaging: example

Let M =5, p=2 and a hash function h; that maps elements to a binary
representation of length 5.

We split the stream Into m = 2P = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, ...}

¢ X, = h — 101
=3 5(5) = 0010 Substream Address Counter
* X,=I4, hs(14) = 10110 o
* x3=5, hs(5)=00I0I SO
¢ x,=2, hs(2)=01000 SI
e %x:=8, hs(8)=00100 52
e X¢=I, hs(1)=110I0 3

19 e @ Vaslki Kalavri | Boston University 2020



Stochastic averaging: example

Let M =5, p=2 and a hash function h; that maps elements to a binary
representation of length 5.

We split the stream Into m = 2P = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, ...}

* Xi=5, h5(5):00 Substream Address Counter
* X,=I4, hs(14) = 10110 o 0

* x3=5, hs(5)=00I0I SO

¢ x,=2, hs(2)=01000 SI

e x,=8, hs(8)=00100 2

e X6=I, h;(1)=11010 >
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Stochastic averaging: example

Let M =5, p=2 and a hash function h; that maps elements to a binary
representation of length 5.

We split the stream Into m = 2P = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, ...}

* Xi=5, h5(5) . OO Substream Address Counter
* Xy=14, h5(14) — IO S 0
e x3=5, hs(5)=o00I101I q
e x,=2, h;(2)=01000 |
4 5 S 1
e %x:=8, hs(8)=00100 2
e X6=I, h;(1)=11010 >
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Stochastic averaging: example

Let M =5, p=2 and a hash function h; that maps elements to a binary
representation of length 5.

We split the stream Into m = 2P = 4 sub-streams.

Consider the input elements {5, 14, 5, 2, 8, 1, ...}

* Xi=5; h5(5):00 Substream Address Counter
* x,=14, hs(14) =[10110 S )

e X3=5, hs(5) =0010I SO 3

e x,=2, hs(2)=01000 |

e x;=8, hs(8)=00100 > |

* X6=I, hs(1)=110I0 > |
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| 0ogLog algorithm

Input: stream S, array of m counters, hash fiction h

Output: cardinality of S

for j=0 to m-1 do:
COUNT[j] = O

for x in S do:
1 = h(x)
J = getLeftBits(1, p)
r = rank(getRightBits(1i, M-p))
COUNT[j] = max(COUNT[J], Tr)

R = average(COUNT) // average of all j counters
output a * m * 2R // a is a constant, a ~ 0.39701, for m > 64.
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Why LoglLog?

Let's assume we want to be able to count up to n distinct elements.
We need a hash function that maps each input element to log,n bits.

Then, each counter needs to be able to count up to log,(log.n) 0s.
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Combining estimates

 Average won’t work: The expected value of 2fis too large.

 Median won’t work: it is always a power of 2, thus, If the correct
estimate Is between two powers of 2, we won't get a good estimate.

Solution: harmonic mean (HyperLoglLogQ)

m—1
A=a, -m?-( Z 0 —COUNTIjly
J=0
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Standard error

The standard error of the LoglLog algorithm is inversely related to the
number of counters m:

For m =256, the error 1S about 8%

For m = 1024, the error decreases to 4%
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Space reqguirements
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Space reqguirements

As we read the stream, it Is not necessary to store any elements seen:
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Space reqguirements

As we read the stream, it Is not necessary to store any elements seen:

 Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.
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Space reqguirements

As we read the stream, it Is not necessary to store any elements seen:

 Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

* The hash value needs to map elements to M = logz(230) = 30 bits.

 \We need 1024 counters, so m = 210 and we need p = logam = 10
bits for routing.
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Space reqguirements

As we read the stream, it Is not necessary to store any elements seen:

 Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

* The hash value needs to map elements to M = logz(230) = 30 bits.

 \We need 1024 counters, so m = 210 and we need p = logam = 10
bits for routing.

e Each counter needs to be able to count up to 20 0s, so we need to
allocate log220 = 4.32 bits per counter.
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Space reqguirements

As we read the stream, it Is not necessary to store any elements seen:

 Assume we want to count cardinalities up to 1 billion or 230 with an
accuracy of 4%.

* The hash value needs to map elements to M = logz(230) = 30 bits.

 \We need 1024 counters, so m = 210 and we need p = logam = 10
bits for routing.

e Each counter needs to be able to count up to 20 0s, so we need to
allocate log220 = 4.32 bits per counter.

* |f we round up to 5 bits, that's 640 bytes In total.
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Estimating frequencies
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MVotivating examples

Detect DNS DDoS attacks

* Flooding the resources of the targeted system by sending a large number of query from a
notnet

 (Group queries by their top-level domain and investigate most popular domains

o Alert if we detect many different non-existent subdomains of the same primary domain

Trending topics calculation

* [witter receives around 500 billion tweets per day

 Estimating the frequencies of hashtags and comparing them with yesterday’s frequencies
orovides an indication of what is “trending”
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Counting Bloom Filter

 Expand the classical BF with an array of m counters corresponding to
each of the m bits in the filter:

* |Increment the corresponding counter every time an element is added

 Jo delete an element, decrease its corresponding counters and unset the corresponding bit of

the counter falls to O

* A single array of counters for all hash functions increases the collision

porobability

e Counter overestimatior

high-frequency e

emernr

IS almost certain for very large data streams with
ts
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The Count-Min Sketch

A space-efticient probabilistic data structure that can be used to
estimate frequencies and heavy hitters in data streams

't was introduced in 2003 by Cormode and Muthukrishnan

't uses a hash table of p arrays of m counters
Elements update different subsets of counters, one per hash table

Many independent trials by using p hash functions with an array of m
counters for each of them
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The Count-Min Sketch

map the universe to the range {1, 2, ..., m}

h,

h,

p pairwise independent hash functions

hy,

p arrays

m counters

21
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Adding an element to the sketch

stream elements x

3[3]1]5]0]o0

s5[8|2[0]0]>

All counters
are initialized
to Os

2|9|7]3]0]5

m counters

for j=1 to p do
1 = hj(x)
Ci,jt+

22
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Estimating frequency

T s
h/ |o|olole|o|3|3]1]|5]o]o]3]8]>2
nl [3]o]o]3]o]s]s|2]ofo|2]9]2]4

762322973‘05850

< m counters

let f: array of length p
for j=1 to p do
i = hj(x)
f[J] = ci,3
return min(£f[1], f[2], .., £[pP])

23

Counters provide the upper
bound for an element’s frequency:

fx) < cjh(x),j =1,2,....,p

Because m << n, there are many
collisions and counters generally
overestimate real frequencies.

The best approximation is not the
average of all counters, but the
minimum.
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Computing top-k
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Computing top-k

e Additional to the array of counter, we allocate:

e a counter N of the number of elements seen so far

 aheap X*of up to k potential heavy hitters and their frequency estimations
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Computing top-k

e Additional to the array of counter, we allocate:

e a counter N of the number of elements seen so far

 aheap X*of up to k potential heavy hitters and their frequency estimations

 We use a frequency threshold f*=N/k to decide whether an element is popular
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Computing top-k

e Additional to the array of counter, we allocate:

e a counter N of the number of elements seen so far

 aheap X*of up to k potential heavy hitters and their frequency estimations

 We use a frequency threshold f*=N/k to decide whether an element is popular

 For every element x, we add it to the sketch and then use the updated sketch
to estimate its frequency.
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Computing top-k

Additional to the array of counter, we allocate:

e a counter N of the number of elements seen so far

 aheap X*of up to k potential heavy hitters and their frequency estimations

We use a frequency threshold £*=N/k to decide whether an element is popular

For every element x, we add It to the sketch and then use the updated sketch
to estimate its frequency.

It the estimated frequency is above the threshold:

e Wwe add it to the heap or update its frequency if it is already in the heap
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Computing top-k

Additional to the array of counter, we allocate:

e a counter N of the number of elements seen so far

 aheap X*of up to k potential heavy hitters and their frequency estimations

We use a frequency threshold £*=N/k to decide whether an element is popular

For every element x, we add It to the sketch and then use the updated sketch
to estimate its frequency.

It the estimated frequency is above the threshold:

e Wwe add it to the heap or update its frequency if it is already in the heap

When a popular element’s frequency drops below the threshold, we remove it
from the heap
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Computing top-k

N=0 // number of elements so far
X* = {} // heap of top-k elements

for x 1n input do:
N = N+1
f* = N/k // current frequency threshold
update(x) // add x to the count-min sketch (slide 22)
f = frequency(x) // use sketch to estimate frequency (slide 23)

if £ >= £* then:
X*.add({x, f})
// remove unpopular elements from the heap
for (y, fy) in X* do:
if £, <= f£* then
X* . remove({y, fy})

return X*
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Error and space/time trade-offs

« Query approximation error €
o Error probability o

Guarantee: The estimation error for frequencies will not exceed € - n with
probability 1 — o

* A higher number of hash functions decreases the probability of a bad

| 1
estimate: p = [lng]
| 2.71828
. The recommended number of counters is m = [———]
€
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Space reqguirements
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Space reqguirements

1
For a standard error of 6 ~% 1 % , we need at least p = [lngl = 5 hash functions.
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Space reqguirements

|
For a standard error of 6 ~% 1 % , we need at least p = [lngl = 5 hash functions.
Consider a stream of 10 million (n = 1()7) elements and an allowed overestimate of
10
10. Thus, € = — = 107°
107
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Space reqguirements

1
For a standard error of 6 ~% 1 % , we need at least p = [lngl = 5 hash functions.

Consider a stream of 10 million (n = 1()7) elements and an allowed overestimate of

10 6
10. Thus, € = — = 107°.
107

| 2.71828
The recommended number of counters is m = ~ 2,718,280

10-6
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Space reqguirements

1

For a standard error of 6 ~% 1 % , we need at least p = [lngl = 5 hash functions.

Consider a stream of 10 million (n = 1()7) elements and an allowed overestimate of

10 6
10. Thus, € = — = 107°.
107

2.71828

The recommended number of counters is m = e ~ 2,718,280

The sketch data structure requires a counter array of size 5 * 2,718,280.
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Space reqguirements

1
For a standard error of 6 % 1 %, we need at least p = [In—| = 5 hash functions.

0

Consider a stream of 10 million (n = 1()7) elements and an allowed overestimate of

10 6
10. Thus, € = — = 107°.
107

| 2.71828
The recommended number of counters is m = e ~ 2,718,280

The sketch data structure requires a counter array of size 5 * 2,718,280.

Considering 32-bit counters, the count-min sketch requires a total of 54.4MB of
memory.
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~Further reading

Jure Lescovec, Anand Rajaraman and Jeffrey David Ullman. Mining of Massive
Datasets. http://infolab.stanford.edu/~ullman/mmds/book.pdf

Durand, Marianne, and Philippe Flajolet. Loglog counting of large
cardinalities. European Symposium on Algorithms, 2003.

—-lajolet, Philippe, et al. Hyperloglog: the analysis of a near-optimal cardinality
estimation algorithm. 2007. https://hal.archives-ouvertes.fr/file/index/docid/406166/
filename/FIFuGaMeO7.pdf

Cormode, Graham, and Shan Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms (2005).

Gakhov, Andrii. Probabilistic Data Structures and Algorithms for Big Data
Applications. 2019.
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