
🤧😷🤒 Vasiliki Kalavri | Boston University 2020

CS 591 K1:
Data Stream Processing and Analytics

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

Spring 2020

4/28: Graph Streaming

mailto:vkalavri@bu.edu

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Modeling the world as a graph

2

Social networks

friend

fo
llo

ws

The web
Actor-movie networks

LondonZurich

Berlin

Transportation networks

🤧😷🤒 Vasiliki Kalavri | Boston University 20203

friend

fo
llo

ws

LondonZurich

Berlin

“conservative”
“liberal”

If you like “Inside job”
you might also like “The Bourne Identity”

What’s the cheapest way
to reach Zurich from London through Berlin?

These are the top-10 relevant results
for the search term “graph”

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Basics

1

5

4

3

2

“node” or “vertex”

“edge”

1

5

4

3

2

undirected graph

directed graph

4

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Graph streams
Graph streams model
interactions as events
that update an underlying
graph structure

5

Edge events:
A purchase, a movie rating, a like on
an online post, a bitcoin transaction, a
packet routed from a source to
destination

Vertex events:
A new product, a new movie, a user

🤧😷🤒 Vasiliki Kalavri | Boston University 20206

🤧😷🤒 Vasiliki Kalavri | Boston University 20206

🤧😷🤒 Vasiliki Kalavri | Boston University 20206

🤧😷🤒 Vasiliki Kalavri | Boston University 20206

🤧😷🤒 Vasiliki Kalavri | Boston University 20206

🤧😷🤒 Vasiliki Kalavri | Boston University 20206

🤧😷🤒 Vasiliki Kalavri | Boston University 20206

🤧😷🤒 Vasiliki Kalavri | Boston University 20206

🤧😷🤒 Vasiliki Kalavri | Boston University 20206

🤧😷🤒 Vasiliki Kalavri | Boston University 20207

Let G(t) = (V(t), E(t)) be the graph observed up to timestamp t.

For t=0, V(t) = E(t) = {}

For every t > 0, we receive one event:

• Insert-only edge stream: events indicate edge additions

• Fully-dynamic edge stream: events indicate edge additions or deletions

A t+1, the graph is obtained by inserting a new edge or deleting an existing
edge (u, v) to E(t+1).

If any of u, v do not already exist in V(t), they are added to V(t+1).

Preliminaries

🤧😷🤒 Vasiliki Kalavri | Boston University 20208

Some algorithms model graph streams a sequence of vertex events.

A vertex stream consists of events that contain a vertex and all of its
neighbors.

Although this model can enable a theoretical analysis of streaming
algorithms, it cannot adequately model real-world unbounded streams, as
the neighbors cannot be known in advance.

Vertex streams (not today)

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Batch Graph Processing

9

Batch graph processing systems, such as Apache Graph, GraphX,
Pregel, operate offline.

They are built to analyze a snapshot of the real graph:

• the Facebook social network on January 30 2016

• user web logs gathered between March 1st 12:00 and 16:00

• retweets and replies for 24h after the announcement of the death of David Bowie

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

1. Load: read the graph from disk
and partition it in memory

10

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

1. Load: read the graph from disk
and partition it in memory

2. Compute: read and mutate the
graph state

11

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

1. Load: read the graph from disk
and partition it in memory

2. Compute: read and mutate the
graph state

11

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

1. Load: read the graph from disk
and partition it in memory

2. Compute: read and mutate the
graph state

3. Store: write the final graph state
back to disk

12

🤧😷🤒 Vasiliki Kalavri | Boston University 202013

• We express the
computation from the
view of a single vertex

• Vertices communicate
through messages

• The computation
proceeds in synchronous
iteration steps

The vertex-centric model: think like a vertex

3, 41

2 1, 4

5 3

. . .
1

5

4

3

2

🤧😷🤒 Vasiliki Kalavri | Boston University 202014

(Vi+1, outbox) <— compute(Vi, inbox)

Superstep i Superstep i+1

1 3, 4

2 1, 4

5 3

. . .

1 3, 4

2 1, 4

5 3

. . .

🤧😷🤒 Vasiliki Kalavri | Boston University 202015

A component is a subgraph in which every vertex is reachable from all
other vertices in the subgraph.

Connected components

1

43

2

5

6

7

8

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Batch Connected Components

• State: the graph and a component ID per vertex
• initially equal to vertex ID

• Iterative step: For each vertex
• choose the min of neighbors’ component IDs and own component ID

as the new ID
• if the component ID changed since the last iteration, notify neighbors

16

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

1

43

2

5

i=0

Batch Connected Components

17

6

7

8

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

1

43

2

5

6

7

8

i=0

18

1
4

3
4
5

2
3
5

2
4

7
8

6
7

6
8

Batch Connected Components

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

1

21

2

2

i=1

19

6

6

6

Batch Connected Components

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

1

21

1

2

6

6

6

i=1

20

2

1
2
2

1
1
2

1
2

7
6

6

6

Batch Connected Components

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

1

11

1

1

6

6

6

converged

21

Batch Connected Components

compID = 1 compID = 6

🤧😷🤒 Vasiliki Kalavri | Boston University 202022

• How can we run such algorithms if the graph is continuously generated
as a stream of edges?

• How can we perform iterative computation in a streaming dataflow
engine? How can we propagate watermarks?

• Do we need to run the computation from scratch for every new edge?

• Can we use graph synopses and summaries and compute graph
analytics in one-pass?

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Connectivity &
Bipartite property

23

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Streaming Connected Components

• State: a disjoint set (union-find) data structure for the components
• it stores a set of elements partitioned in disjoint subsets

• Single-pass computation: For each edge
• if seen for the 1st time, create a component with ID the min of the vertex IDs
• if in different components, merge them and update the component ID to the min

of the component IDs
• if only one of the endpoints belongs to a component, add the other one to the

same component

24

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

31

52

54

76

86

ComponentID Vertices

1

43

2

5

6

7

8

25

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

31

52

54

76

86

42

ComponentID Vertices

1 1, 3

1

43

2

5

6

7

8

26

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

31

52

54

76

86

42

ComponentID Vertices

43

2 2, 5

1 1, 3

1

43

2

5

6

7

8

27

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

31

52

54

76

86

42

43

87

ComponentID Vertices

2 2, 4, 5

1 1, 3

1

43

2

5

6

7

8

28

🤧😷🤒 Vasiliki Kalavri | Boston University 2020
31

52

54

76

86

42

43

87

41

ComponentID Vertices

2 2, 4, 5

1 1, 3

6 6, 7

1

43

2

5

6

7

8

29

🤧😷🤒 Vasiliki Kalavri | Boston University 2020
52

54

76

86

42

43

87

41

ComponentID Vertices

2 2, 4, 5

1 1, 3

6 6, 7, 8

1

43

2

5

6

7

8

30

🤧😷🤒 Vasiliki Kalavri | Boston University 202054

76

86

42

43

87

41 ComponentID Vertices

2 2, 4, 5

1 1, 3

6 6, 7, 8

1

43

2

5

6

7

8

31

🤧😷🤒 Vasiliki Kalavri | Boston University 202076

86

42

43

87

41

ComponentID Vertices

2 2, 4, 5

1 1, 3

6 6, 7, 8

1

43

2

5

6

7

8

32

🤧😷🤒 Vasiliki Kalavri | Boston University 202076

86

42

43

87

41

ComponentID Vertices

6 6, 7, 8

1 1, 2, 3, 4, 5

1

43

2

5

6

7

8

33

🤧😷🤒 Vasiliki Kalavri | Boston University 2020
86

42

43

87

41

ComponentID Vertices

6 6, 7, 8

1 1, 2, 3, 4, 5

1

43

2

5

6

7

8

34

🤧😷🤒 Vasiliki Kalavri | Boston University 202042

43

87

41

ComponentID Vertices

6 6, 7, 8

1 1, 2, 3, 4, 5

1

43

2

5

6

7

8

35

🤧😷🤒 Vasiliki Kalavri | Boston University 202042

43

87

41

ComponentID Vertices

6 6, 7, 8

1 1, 2, 3, 4, 5

1

43

2

5

6

7

8

35

How would you
implement this in Flink?

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Distributed Stream Connected Components

36

1. partition the edge stream, e.g. by source Id

2. maintain a disjoint set
in each partition

3. periodically merge the
partial disjoint sets into a

global one

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Connected components in Flink

37

DataStream<DisjointSet> cc =
 edgeStream 
 .keyBy(0)  
 .timeWindow(Time.of(100, TimeUnit.MILLISECONDS))  
 .process(new UpdateDisjointSet()) // ephemeral partial state 
 .flatMap(new Merger()) // global state 
 .setParallelism(1); // merging on one task

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Connected components in Flink

37

DataStream<DisjointSet> cc =
 edgeStream 
 .keyBy(0)  
 .timeWindow(Time.of(100, TimeUnit.MILLISECONDS))  
 .process(new UpdateDisjointSet()) // ephemeral partial state 
 .flatMap(new Merger()) // global state 
 .setParallelism(1); // merging on one task

Will this scale?

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Connected components in Flink

37

DataStream<DisjointSet> cc =
 edgeStream 
 .keyBy(0)  
 .timeWindow(Time.of(100, TimeUnit.MILLISECONDS))  
 .process(new UpdateDisjointSet()) // ephemeral partial state 
 .flatMap(new Merger()) // global state 
 .setParallelism(1); // merging on one task

Will this scale? How to represent the state?

🤧😷🤒 Vasiliki Kalavri | Boston University 202038

A component is a subgraph in which every vertex is reachable from all
other vertices in the subgraph.

Bipartite graph checking

1

43

2

5

6

7

8

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

A graph is bipartite if its vertex set can be
divided into two disjoint independent sets U, V,
such that every edge connects a vertex in U to
a vertex in V (no edges between vertices in the
same part).

A bipartite graph has no odd-length cycles
(thus, no triangles).

39

Bipartite graph checking

🤧😷🤒 Vasiliki Kalavri | Boston University 202040

Similar to connected components, but
• Each vertex is also assigned a sign, (+) or (-)
• Edge endpoints must have different signs
• When merging components, if flipping all signs doesn’t work

=> the graph is not bipartite

Bipartite graph checking

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

1

43

2

5

6

7

(+) (-)

(+)
(-)

(+) (-)

(+)

Cid=1

Cid=5

41

Bipartite graph checking

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

3 5

1

43

2

5

6

7

(+) (-)

(+)
(-)

(+) (-)

(+)

Cid=1

Cid=5

42

Bipartite graph checking

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

3 5

1

43

2

5

6

7

(+) (-)

(+)
(-)

(+) (-)

(+)

Cid=1

Cid=5

43

Bipartite graph checking

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Cid=1

1

43

2

5

6

7

(+) (-)

(-)(+)

(+) (-)

(-)

3 5

44

Bipartite graph checking

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

3 7

Cid=1

1

43

2

5

6

7

(+) (-)

(-)(+)

(+) (-)

(-)
Can’t flip signs and maintain consistency

=> not bipartite.

45

Bipartite graph checking

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

Spanners

46

🤧😷🤒 Vasiliki Kalavri | Boston University 202047

• Consider an undirected unweighted graph, G = (V, E).

• We want to estimate the distance between any pair of nodes u, v as the
length of the shortest path between them.

• A spanner H of graph G is a subgraph of G with fewer edges and the
same set of vertices: .E(H) ⊆ E(G), V(H) = V(G)

Distance estimation

🤧😷🤒 Vasiliki Kalavri | Boston University 202048

A k-spanner is a graph synopsis that preserves the distances between any
pair of nodes up to a factor of k:

 ∀(u, v) ∈ V, dG(u, v) ≤ dH(u, v) ≤ k ⋅ dG(u, v)

The k-spanner synopsis

initialize all distances to maxValue
E(H) = {}
for (u, v) in input do
 if dH(u,v) > k then
 E(H).add((u,v))

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

41

74

87

84

54

49

k=3

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

41

74

87

84

54

65

1

4

50

k=3
d(1, 4) = 1

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

41

74

87

84

54

65

32

1

4

51

k=3

7

d(1, 4) = 1
d(4, 7) = 1

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

8

41

74

87

84

54

65

32

43

1

4

52

k=3

7

d(1, 4) = 1
d(4, 7) = 1
d(7, 8) = 1

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

8

41

74

87

84

54

65

32

43

63

1

4

53

k=3

7

d(1, 4) = 1
d(4, 7) = 1
d(7, 8) = 1

d(4, 8) = d(4, 7) + d(7, 8)
 = 2 < 3

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

8

74

87

84

54

65

32

43

63

1

4

54

k=3

7

d(1, 4) = 1
d(4, 7) = 1
d(7, 8) = 1

5

d(4, 5) = 1

🤧😷🤒 Vasiliki Kalavri | Boston University 2020

6

8

87

84

54

65

32

43

63

55

k=3

7

d(1, 4) = 1
d(4, 7) = 1
d(7, 8) = 1

5

d(4, 5) = 1
d(5, 6) = 1

1

4

🤧😷🤒 Vasiliki Kalavri | Boston University 202084

54

65

32

43

63

56

k=3
d(1, 4) = 1
d(4, 7) = 1
d(7, 8) = 1
d(4, 5) = 1
d(5, 6) = 1

2 3

d(2, 3) = 1

6

87

5

1

4

🤧😷🤒 Vasiliki Kalavri | Boston University 2020
54

65

32

43

63

57

k=3
d(1, 4) = 1
d(4, 7) = 1
d(7, 8) = 1
d(4, 5) = 1
d(5, 6) = 1

2 3

d(2, 3) = 1
d(3, 4) = 1

6

87

5

1

4

🤧😷🤒 Vasiliki Kalavri | Boston University 202065

32

43

63

58

k=3
d(1, 4) = 1
d(4, 7) = 1
d(7, 8) = 1
d(4, 5) = 1
d(5, 6) = 1
d(2, 3) = 1
d(3, 4) = 1

d(3, 6) = d(3, 4) + d(4, 5) + d(5, 6)
 = 3

2 3

6

87

5

1

4

🤧😷🤒 Vasiliki Kalavri | Boston University 202059

• Similar challenges exist for a data-parallel implementation of spanners

• How to represent the spanner? As an adjacency list? which state
primitives are suitable? Is RocksDB a suitable backend for graph state?

• How to compute the distance between edges? Do we need to do that for
every incoming edge? Can we compute the distances in separate
partitions and then merge them?

Data-parallel streaming spanners
on Flink?

🤧😷🤒 Vasiliki Kalavri | Boston University 202060

• McGregor, Andrew. Graph stream algorithms: a survey. ACM SIGMOD
Record 43.1 (2014). https://dl.acm.org/doi/pdf/10.1145/2627692.2627694

• Stanton, Isabelle, and Gabriel Kliot. Streaming graph partitioning for large
distributed graphs. ACM SIGKDD, 2012. https://www.microsoft.com/en-us/
research/wp-content/uploads/2012/08/kdd325-stanton.pdf

• Stefani, Lorenzo De, et al. Triest: Counting local and global triangles in fully
dynamic streams with fixed memory size. TKDD 2017. https://www.kdd.org/
kdd2016/papers/files/rfp0465-de-stefaniA.pdf

Further reading

https://dl.acm.org/doi/pdf/10.1145/2627692.2627694
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/08/kdd325-stanton.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/08/kdd325-stanton.pdf
https://www.kdd.org/kdd2016/papers/files/rfp0465-de-stefaniA.pdf
https://www.kdd.org/kdd2016/papers/files/rfp0465-de-stefaniA.pdf

