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Modeling the world as a graph
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“conservative”
“liberal”

If you like “Inside job”
you might also like “The Bourne Identity”

What’s the cheapest way
to reach Zurich from London through Berlin?

These are the top-10 relevant results
for the search term “graph”
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Basics
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Graph streams
Graph streams model 
interactions as events 
that update an underlying 
graph structure

5

Edge events: 
A purchase, a movie rating, a like on 
an online post, a bitcoin transaction, a 
packet routed from a source to 
destination

Vertex events: 
A new product, a new movie, a user
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Let G(t) = (V(t), E(t)) be the graph observed up to timestamp t. 

For t=0, V(t) = E(t) = {} 

For every t > 0, we receive one event:  

• Insert-only edge stream: events indicate edge additions 

• Fully-dynamic edge stream: events indicate edge additions or deletions 

A t+1, the graph is obtained by inserting a new edge or deleting an existing 
edge (u, v) to E(t+1).  

If any of u, v do not already exist in V(t), they are added to V(t+1).

Preliminaries
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Some algorithms model graph streams a sequence of vertex events. 

A vertex stream consists of events that contain a vertex and all of its 
neighbors. 

Although this model can enable a theoretical analysis of streaming 
algorithms, it cannot adequately model real-world unbounded streams, as 
the neighbors cannot be known in advance.

Vertex streams (not today)
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Batch Graph Processing

9

Batch graph processing systems, such as Apache Graph, GraphX, 
Pregel, operate offline. 

They are built to analyze a snapshot of the real graph: 

• the Facebook social network on January 30 2016 

• user web logs gathered between March 1st 12:00 and 16:00 

• retweets and replies for 24h after the announcement of the death of David Bowie
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1. Load: read the graph from disk 
and partition it in memory

10
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1. Load: read the graph from disk 
and partition it in memory

2. Compute: read and mutate the 
graph state

11
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1. Load: read the graph from disk 
and partition it in memory

2. Compute: read and mutate the 
graph state

3. Store: write the final graph state 
back to disk

12
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• We express the 
computation from the 
view of a single vertex 

• Vertices communicate 
through messages

• The computation 
proceeds in synchronous 
iteration steps

The vertex-centric model: think like a vertex

3, 41
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(Vi+1, outbox) <— compute(Vi, inbox)

Superstep i Superstep i+1

1 3, 4

2 1, 4

5 3

. . .

1 3, 4

2 1, 4

5 3

. . .
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A component is a subgraph in which every vertex is reachable from all 
other vertices in the subgraph.

Connected components
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Batch Connected Components

• State: the graph and a component ID per vertex 
• initially equal to vertex ID 

• Iterative step: For each vertex 
• choose the min of neighbors’ component IDs and own component ID 

as the new ID 
• if the component ID changed since the last iteration, notify neighbors

16
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• How can we run such algorithms if the graph is continuously generated 
as a stream of edges? 

• How can we perform iterative computation in a streaming dataflow 
engine? How can we propagate watermarks? 

• Do we need to run the computation from scratch for every new edge? 

• Can we use graph synopses and summaries and compute graph 
analytics in one-pass?
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Connectivity & 
Bipartite property

23
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Streaming Connected Components

• State: a disjoint set (union-find) data structure for the components 
• it stores a set of elements partitioned in disjoint subsets 

• Single-pass computation: For each edge 
• if seen for the 1st time, create a component with ID the min of the vertex IDs 
• if in different components, merge them and update the component ID to the min 

of the component IDs 
• if only one of the endpoints belongs to a component, add the other one to the 

same component

24
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How would you 
implement this in Flink?
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Distributed Stream Connected Components

36

1. partition the edge stream, e.g. by source Id

2. maintain a disjoint set 
in each partition

3. periodically merge the 
partial disjoint sets into a 

global one
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Connected components in Flink

37

DataStream<DisjointSet> cc = 
  edgeStream 
    .keyBy(0)  
    .timeWindow(Time.of(100, TimeUnit.MILLISECONDS))  
    .process(new UpdateDisjointSet()) // ephemeral partial state 
    .flatMap(new Merger()) // global state 
    .setParallelism(1); // merging on one task
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Connected components in Flink
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  edgeStream 
    .keyBy(0)  
    .timeWindow(Time.of(100, TimeUnit.MILLISECONDS))  
    .process(new UpdateDisjointSet()) // ephemeral partial state 
    .flatMap(new Merger()) // global state 
    .setParallelism(1); // merging on one task

Will this scale?
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Connected components in Flink

37

DataStream<DisjointSet> cc = 
  edgeStream 
    .keyBy(0)  
    .timeWindow(Time.of(100, TimeUnit.MILLISECONDS))  
    .process(new UpdateDisjointSet()) // ephemeral partial state 
    .flatMap(new Merger()) // global state 
    .setParallelism(1); // merging on one task

Will this scale? How to represent the state?
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A component is a subgraph in which every vertex is reachable from all 
other vertices in the subgraph.

Bipartite graph checking
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A graph is bipartite if its vertex set can be 
divided into two disjoint independent sets U, V, 
such that every edge connects a vertex in U to 
a vertex in V (no edges between vertices in the 
same part). 

A bipartite graph has no odd-length cycles 
(thus, no triangles).

39

Bipartite graph checking
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Similar to connected components, but 
• Each vertex is also assigned a sign, (+) or (-) 
• Edge endpoints must have different signs 
• When merging components, if flipping all signs doesn’t work 

=> the graph is not bipartite

Bipartite graph checking
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Bipartite graph checking
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Can’t flip signs and maintain consistency 

=> not bipartite.
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Bipartite graph checking
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Spanners

46
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• Consider an undirected unweighted graph, G = (V, E). 

• We want to estimate the distance between any pair of nodes u, v as the 
length of the shortest path between them. 

• A spanner H of graph G is a subgraph of G with fewer edges and the 
same set of vertices: .E(H) ⊆ E(G), V(H) = V(G)

Distance estimation
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A k-spanner is a graph synopsis that preserves the distances between any 
pair of nodes up to a factor of k: 

                   ∀(u, v) ∈ V, dG(u, v) ≤ dH(u, v) ≤ k ⋅ dG(u, v)

The k-spanner synopsis

initialize all distances to maxValue
E(H) = {}
for (u, v) in input do
  if dH(u,v) > k then
    E(H).add((u,v))
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d(1, 4) = 1
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• Similar challenges exist for a data-parallel implementation of spanners 

• How to represent the spanner? As an adjacency list? which state 
primitives are suitable? Is RocksDB a suitable backend for graph state? 

• How to compute the distance between edges? Do we need to do that for 
every incoming edge? Can we compute the distances in separate 
partitions and then merge them?

Data-parallel streaming spanners 
on Flink?
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• McGregor, Andrew. Graph stream algorithms: a survey. ACM SIGMOD 
Record 43.1 (2014). https://dl.acm.org/doi/pdf/10.1145/2627692.2627694  

• Stanton, Isabelle, and Gabriel Kliot. Streaming graph partitioning for large 
distributed graphs. ACM SIGKDD, 2012. https://www.microsoft.com/en-us/
research/wp-content/uploads/2012/08/kdd325-stanton.pdf 

• Stefani, Lorenzo De, et al. Triest: Counting local and global triangles in fully 
dynamic streams with fixed memory size. TKDD 2017. https://www.kdd.org/
kdd2016/papers/files/rfp0465-de-stefaniA.pdf

Further reading

https://dl.acm.org/doi/pdf/10.1145/2627692.2627694
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/08/kdd325-stanton.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/08/kdd325-stanton.pdf
https://www.kdd.org/kdd2016/papers/files/rfp0465-de-stefaniA.pdf
https://www.kdd.org/kdd2016/papers/files/rfp0465-de-stefaniA.pdf

