
Vasiliki Kalavri | Boston University 2020

CS 591 K1:
Data Stream Processing and Analytics

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

Spring 2020

1/23: Stream Processing Fundamentals

mailto:vkalavri@bu.edu

Vasiliki Kalavri | Boston University 2020

What is a stream?
• In traditional data processing applications, we know the entire dataset in

advance, e.g. tables stored in a database.

A data stream is a data set that is produced incrementally
over time, rather than being available in full before its

processing begins.

• Data streams are high-volume, real-time data that might be unbounded

• we cannot store the entire stream in an accessible way

• we have to process stream elements on-the-fly using limited memory

2

Vasiliki Kalavri | Boston University 2020

Properties of data streams

• They arrive continuously instead of being available a-priori.

• They bear an arrival and/or a generation timestamp.

• They are produced by external sources, i.e. the DSMS has no control
over their arrival order or the data rate.

• They have unknown, possibly unbounded length, i.e. the DSMS does
not know when the stream ends.

3

Vasiliki Kalavri | Boston University 2020

DW DBMS

SDW DSMS

Database Management
System

• ad-hoc queries, data
manipulation tasks

• insertions, updates, deletions of
single row or groups of rows

Data Stream
Management System

• continuous queries
• sequential data access, high-rate

append-only updates

 Data Warehouse

• complex, offline analysis
• large and relatively static and

historical data
• batched updates during

downtimes, e.g. every night

Streaming Data
Warehouse

• low-latency materialized view
updates

• pre-aggregated, pre-processed
streams and historical data

Data Management Approaches

4

storage analytics

static data

streaming data

Vasiliki Kalavri | Boston University 2020

DBMS vs. DSMS
DBMS DSMS

Data persistent relations streams

Data Access random sequential, single-pass

Updates arbitrary append-only

Update rates relatively low high, bursty

Processing Model query-driven / pull-based data-driven / push-based

Queries ad-hoc continuous

Latency relatively high low

5

Vasiliki Kalavri | Boston University 2020

Traditional DW vs. SDW
Traditional DW SDW

Update Frequency low high

Update propagation synchronized asynchronous

Data historical recent and historical

ETL process complex fast and light-weight

ETL: Extract-Transform-Load 
e.g. unzipping compressed files, data cleaning and standardization

6

Vasiliki Kalavri | Boston University 2020

1. Process events online without storing them

2. Support a high-level language (e.g. StreamSQL)

3. Handle missing, out-of-order, delayed data

4. Guarantee deterministic (on replay) and correct results (on recovery)

5. Combine batch (historical) and stream processing

6. Ensure availability despite failures

7. Support distribution and automatic elasticity

8. Offer low-latency

7

2005

Vasiliki Kalavri | Boston University 2020

actions, alerts

continuous analytics

…

Building a stream processor…

8

?

Vasiliki Kalavri | Boston University 2020

Basic Stream Models

Vasiliki Kalavri | Boston University 2020

A stream can be viewed as a
massive, dynamic, one-dimensional
vector A[1…N]. The size N of the streaming vector is

defined as the product of the
attribute domain size(s).

Note that N might be unknown.

up-to-date frequencies for specific (source, destination)
pairs observed in IP connections that are currently active

10

The vector is updated by a
continuous stream events where the
jth update has the general form

(k, c[j]) and modifies the kth entry of
A with the operation A[k]←A[k] + c[j].

Vasiliki Kalavri | Boston University 2020

Time-Series Model: The jth update is (j, A[j]) and updates arrive in
increasing order of j, i.e. we observe the entries of A by increasing index.

This can model time-series data streams:

• a sequence of measurements from a temperature sensor

• the volume of NASDAQ stock trades over time

This model poses a severe limitation on the stream: updates cannot change
past entries in A.

11

Useful in theory for the development of streaming algorithms
With limited practical value in distributed, real-world settings

Vasiliki Kalavri | Boston University 2020

Cash-Register Model: In this model, multiple updates can increment an
entry A[j]: In the jth update (k, c[j]), it must hold that c[j] ≥ 0.

This can model insertion-only streams:

• monitoring the total packets exchanged between two IP addresses

• the collection of IP addresses accessing a web server

12

With some practical value for use-cases with append-only data
It preserves all history without the option to discard old events

Vasiliki Kalavri | Boston University 2020

Turnstile Model: The jth update (k, c[j]), can be either positive or negative.
Events can be continuously inserted and deleted from the stream.

It can model fully dynamic situations:

• Monitoring active IP network connections is a Turnstile stream, as

connections can be initiated or terminated between any pair of addresses
at any point in the stream.

13

It is the most general model
Hard to develop space-efficient and time-efficient algorithms

Vasiliki Kalavri | Boston University 2020

Relational Streaming Model

Vasiliki Kalavri | Boston University 2020

Streams as evolving relations

• A stream is interpreted as describing a changing relation.

• Stream elements bear a valid timestamp, Vs, after which they are
considered valid and they can contribute to the result.

• alternatively, events can have validity intervals.

• The contents of the relation at time t are all events with Vs ≤ t .

Vasiliki Kalavri | Boston University 2020

Types of streams
• Base stream: produced by an external source

• e.g. TCP packet stream

<timestamp, src_IP, src_port, dest_IP, dest_port, size>

• Derived stream: produced by a continuous query and its operators, e.g.
total traffic from a source every minute

<minute, src_IP, SUM(size)>

packet generation time bytes in packet

total bytes this minuteminute start or end

16

Vasiliki Kalavri | Boston University 2020

src_IP dest_IP bytes

16.2.3.7 10.1.0.2 20K

13.5.6.7 12.4.0.3 32K

16.2.3.7 11.8.6.2 28K

15.1.2.5 11.4.5.5 64K

<t1, 16.2.3.7, 10.1.0.2, 20K>

<t2, 13.5.6.7, 12.4.0.3, 32K>

<t3, 16.2.3.7, 11.8.6.2, 28K>

17

append

<tk, 15.1.2.5, 11.4.5.5, 64K>

…

………

new events

old events

R(t1)

R(t2)

R(t3)

R(tk)

Vasiliki Kalavri | Boston University 2020

• Base streams are typically append-only

• previously arrived items are not modified

• Derived streams may not be append-only

• what if packets arrive late?

• we might need to revise the computed total traffic, i.e. output stream might contain
updates to previously emitted items

12:0112:02 12:00

18

3283232328

7264 80

base

derived

Which basic models do base and
derived streams correspond to?

Vasiliki Kalavri | Boston University 2020

Results as continuously updated
materialized views

src dest total

1 2 20Ksum

src dest bytes
1 2 20K

• Base streams update relation tables and derived streams update materialized views.

• An operator outputs event streams that describe the changing view computed over
the input stream according to the relational semantics of the operator.

19

Vasiliki Kalavri | Boston University 2020

• Base streams update relation tables and derived streams update materialized views.

• An operator outputs event streams that describe the changing view computed over
the input stream according to the relational semantics of the operator.

src dest bytes
1 2 20K
2 5 32K

src dest total

1 2 20K

2 5 32K

sum

Results as continuously updated
materialized views

20

Vasiliki Kalavri | Boston University 2020

src dest bytes
1 2 20K
2 5 32K
1 2 28K

src dest total

1 2 48K

2 5 32K

sum

• Base streams update relation tables and derived streams update materialized views.

• An operator outputs event streams that describe the changing view computed over
the input stream according to the relational semantics of the operator.

Results as continuously updated
materialized views

21

Vasiliki Kalavri | Boston University 2020

src dest bytes
1 2 20K
2 5 32K
1 2 28K
2 3 32K

src dest total

1 2 48K

2 5 32K

2 3 32K

sum

Results as continuously updated
materialized views

• Base streams update relation tables and derived streams update materialized views.

• An operator outputs event streams that describe the changing view computed over
the input stream according to the relational semantics of the operator.

22

Vasiliki Kalavri | Boston University 2020

src dest bytes
1 2 20K
2 5 32K
1 2 28K
2 3 32K
2 5 64K

src dest total

1 2 48K

2 5 96K

2 3 32K

sum

• Base streams update relation tables and derived streams update materialized views.

• An operator outputs event streams that describe the changing view computed over
the input stream according to the relational semantics of the operator.

23

Results as continuously updated
materialized views

Vasiliki Kalavri | Boston University 2020

Stream representation matters
Consider streams of sensor
readings from a temperature probe

1. a reading of the current temperature every 1s?

2. the difference from the previous reading every 1s?

3. a reading of the current temperature only if it differs significantly from the

last emitted reading?

How would you compute the average
temperature over all sensors if the probe emits:

24

Vasiliki Kalavri | Boston University 2020

Stream denotation
An abstract interpretation of the stream as a mathematical structure, e.g.

a sequence of (finite) relation states over a

common schema R: [r1(R), r2(R), ...,],

where the individual relations are unordered sets.

src dest bytes

1 2 20K

2 5 32K

1 2 28K

{(1, 2, 20K), (2, 5, 32K), (1, 2, 28K)}

25

Vasiliki Kalavri | Boston University 2020

Such a relation sequence could be represented in various ways:

• as the concatenation of serializations of the relations.

• as a list of tuple-index pairs, where <t, j> indicates that t ∈ rj

• as a serialization of r1 followed by a series of delta tuples that indicate updates to
make to obtain r2, r3, ..., etc.

• as a replacement sequence where some attribute A denotes a key and an
arriving tuple t replaces any existing tuple with the same t(A) value to form a new
relation state.

• as a sliding window with length k in which each subsequence of k tuples
represents a relation state in the sequence.

26

Vasiliki Kalavri | Boston University 2020

src dest bytes

1 2 20K

2 5 32K

2 3 28K

src dest bytes

1 2 20K

2 5 32K

src dest bytes

2 5 32K

2 3 28K

1 2 28K

R1 R2 R3

• concatenation
(1, 2, 20K), (2, 5, 32K) EOR (1, 2, 20K), (2, 5, 32K), (2, 3, 28K) EOR (2, 5, 32K), (2, 3, 28K), (1, 2, 28K)
EOR

• tuple-index pairs
<(1, 2, 20K), 1>, <(2, 5, 32K), 2>, <(1, 2, 20K), 2>, <(2, 5, 32K), 1>, <(2, 3, 28K), 3>, <(2, 5, 32K), 3>,
<(2, 3, 28K), 2>, <(1, 2, 28K), 3>, …

• delta tuples
+(1, 2, 20K), +(2, 5, 32K) EOR +(2, 3, 28K) EOR -(1, 2, 20K), +(1, 2, 28K) EOR

What are the advantages and disadvantages of each representation?

27

Vasiliki Kalavri | Boston University 2020

Reconstitution functions
Insert (append-only): The reconstitution function ins starts with an empty bag and then
inserts each successive stream item:

• ins([]) = Ø

• ins(P:i) = insert(i, ins(P)), where P:i denotes the sequence P extended by item i.

Insert-Unique (distinct): The reconstitution function ins_u checks for duplicates:

• ins_u([]) = Ø

• ins_u(P:i) = if i ∉ ins_u(P) then insert(i, ins_u(P)) else ins_u(P).

Insert-Replace: If the stream has a key, the reconstitution function ins_r guarantees that
only the most recent item with a given key is included:

• ins_r([]) = Ø

• ins_r(P:i) = insert(i, {j | j ∈ ins_r(P) ^ j.A ≠ i.A}).

28

Vasiliki Kalavri | Boston University 2020

Query processing challenges

• Memory requirements: we cannot store the whole stream history.

• Data rate: we cannot afford to continuously update indexes and
materialized views for high rates.

• Incremental computation: do we recompute the result from scratch
whenever a new record is appended to the stream table?

Synopses: Maintain summaries of streaming data instead of the complete
history.

29

Vasiliki Kalavri | Boston University 2020

Stream synopses requirements
• Single-pass: synopses can be easily updated with a single pass over

streaming tuples in their arrival order

• Small space: memory footprint poly-logarithmic in the stream size

• Low time: fast update and query times

• Delete-proof: synopses can handle both insertions and deletions in an
update stream

• Composable: synopses can be built independently on different parts of the
stream and composed/merged to obtain the synopsis of the whole stream

30

Vasiliki Kalavri | Boston University 2020

Synopsis maintenance
&

Stream Query Processing
Engine

Synopsis
for R1

Synopsis
for Rr

…

Query Q(R1, …, Rr)

Approximate
answers to Q…

31

Stream for R1

Stream for R2

Stream for Rr

Vasiliki Kalavri | Boston University 2020

• The average of a stream on integers?

• The number of distinct users who have visited a website?

• The top-10 queries inserted in a search engine?

• The connected components of accounts in a stream of financial
transactions?

What synopsis would you use to compute:

32

Vasiliki Kalavri | Boston University 2020

Issues with synopses

• They are lossy compressions of streams

• trade-off memory footprint for accuracy

• Query results are approximate with either deterministic or probabilistic
error bounds

• There is no universal synopsis solution

• They are purpose-built and query-specific

• different synopsis to count distinct elements than to keep track of top-K
events

33

Vasiliki Kalavri | Boston University 2020

Dataflow Streaming Model

Vasiliki Kalavri | Boston University 2020

Dataflow Systems
Distributed execution
Partitioned state
Exact results
Out-of-order support

Single-node execution
Synopses and sketches
Approximate results
In-order data processing

Stream Database Systems

20001992 2013

MapReduce

2004

Tapestry
NiagaraCQ Aurora

TelegraphCQ
STREAM

Naiad

Spark Streaming
Samza

Flink
Millwheel

Storm

S4 Google Dataflow

Now

Evolution of Stream Processing

35

Vasiliki Kalavri | Boston University 2020

Distributed dataflow systems
• Computations as Directed Acyclic Graphs (DAGs)

• nodes are operators and edges are data channels

• operators can accumulate state, have multiple inputs, express event-

time custom window-based logic

• some systems, like Timely Dataflow support cyclic dataflows and

iterations on streams

• Operators are data-parallel

• distributed workers (threads) execute one parallel instance of one of
more operators on disjoint data partitions

36

Vasiliki Kalavri | Boston University 2020

Distributed dataflow model
• Exploit data parallelism and shared-nothing architectures to scale

stream processing to high-volume streams and large state

• Streams do not correspond to states one-on-one, i.e. state can be the
result of one or more base and/or derived streams

• Each query (operator) maintains its own state

• Queries process raw streams, not synopses => results are typically
exact

• Challenges: computation progress, fault-tolerance and result guarantees,
automatic scaling and state migration, out-of-order processing

37

Vasiliki Kalavri | Boston University 2020

• No particular basic stream model (time-series, turnstile…) is imposed by
the dataflow execution engine.

• The burden of representation and denotations if left to the application
developer/user.

• The programmer needs to design and maintain appropriate state
synopses.

• In order to parallelize operations, events must have associated keys.

38

Distributed dataflow model

Vasiliki Kalavri | Boston University 2020

topK
map printsource

w1

w2

w3

w6

w4

w5

w8

w7

Twitter source

Extract hashtags

Count topics

Trends sink

w1 w2

w3 w4
w5 w6

w7 w8

Lo
gi

c
Q

ue
ry

 P
la

n
D

ep
lo

ym
en

t

39

Vasiliki Kalavri | Boston University 2020

source
sink

input port output port

dataflow graph

Dataflow graph
• operators are nodes, data channels

are edges
• channels have FIFO semantics
• streams of data elements flow

continuously along edges
Operators

• receive one or more input streams
• perform tuple-at-a-time, window,

logic, pattern matching
transformations

• output one or more streams of
possibly different type

A series of transformations
on streams in

Stream SQL, Scala, Python,
Rust, Java…

40

Vasiliki Kalavri | Boston University 2020

Stateful operators

Logic

State

<k, v> <#Brexit, 521>

<#WorldCup, 480>

<#StarWars, 300>

<#Brexit>
<#Brexit, 521>

• Stateful operators maintain state that
reflect part of the stream history they
have seen

• windows, continuous aggregations,

distinct…

• State is commonly partitioned by key

• State can be cleared based on

watermarks or punctuations

• window fires, post becomes inactive

41

Vasiliki Kalavri | Boston University 2020

case class Reading(id: String, time: Long, temp: Double) 
 
object MaxSensorReadings {
 def main(args: Array[String]) { 
 val env = StreamExecutionEnvironment.getExecutionEnvironment 
 val sensorData = env.addSource(new SensorSource) 
 val maxTemp = sensorData 
 .map(r => Reading(r.id,r.time,(r.temp-32)*(5.0/9.0))) 
 .keyBy(_.id) 
 .max("temp")  
 maxTemp.print() 
 env.execute("Compute max sensor temperature”) 
 }  
}

Example: Apache Flink DataStream API

42

Vasiliki Kalavri | Boston University 2020

Relational Streaming vs. Dataflow Streaming
Relational Dataflow

Input in-order out-of-order

Results approximate exact

Language SQL extensions, CQL Java, Scala, Python, SQL

Execution centralized distributed

Parallelism pipeline pipeline, task, data

State limited, in-memory partitioned, virtually unlimited, persisted to
backends

Load management shedding backpressure, elasticity

Fault tolerance limited support, high availability full support, exactly-once

43

Vasiliki Kalavri | Boston University 2020

Summary

Today you learned:

• stream representations, stream processing models

• streaming applications and use-cases

• different approaches to data management

• the relational streaming model vs. the dataflow streaming model

44

Vasiliki Kalavri | Boston University 2020

Lecture references
Some material in this lecture was assembled from the following sources:

• Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Data Stream Management:
Processing High-Speed Data Streams. Springer-Verlag, Berlin, Heidelberg.

• Lukasz Golab and M. Tamer Özsu. Issues in data stream management. SIGMOD
Rec. 32, 2 (June 2003).

• David Maier, Jin Li, Peter Tucker, Kristin Tufte, and Vassilis Papadimos. Semantics of data
streams and operators. In Proceedings of the 10th international conference on Database
Theory (ICDT’05).

• Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. Michael Stonebraker, Uǧur
Çetintemel, and Stan Zdonik. The 8 requirements of real-time stream
processing. SIGMOD Rec. 34, 4 (December 2005).

