
Vasiliki Kalavri | Boston University 2020

CS 591 K1:
Data Stream Processing and Analytics

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

Spring 2020

1/28: Stream ingestion and pub/sub systems

mailto:vkalavri@bu.edu

Streaming sources

Files, e.g. transaction logs

Sockets

IoT devices and sensors

Databases and KV stores

Message queues and brokers

Where do stream processors read data from?

2

Challenges

• can be distributed

• out-of-sync sources may produce out-of-order streams

• can be connected to the network

• latency and unpredictable delays

• might be producing too fast

• stream processor needs to keep up and not shed load

• might be producing too slow or become idle

• stream processor should be able to make progress

• might fail (or seem as if they failed)

Streaming sources…

3

Producers and consumers
• An event is typically generated by a producer (or publisher or sender)

and processed by one or multiple consumers (or subscribers or
recipients)

• Events are commonly grouped into the same topic

• in a similar way batch data belonging to the same file are grouped

together

• topics are commonly events of the same type: userCreated,
userLoggedIn, userLoggedOut, userSentPayment

4

Connecting producers to consumers
• Indirectly

• Producer writes to a file or database

• Consumer periodically polls and retrieves new data

• polling overhead, latency?

• Consumer receives a notification when new data is available

• how to implement triggers?

• Direct messaging

• Direct network communication, UDP multicast, TCP

• HTTP or RPC if the consumer exposes a service on the network

• Failure handling: application needs to be aware of message loss,

producers and consumers always online

5

Message queues
• Asynchronous point-to-point communication

• Lightweight buffer for temporary storage

• Messages stored on the queue until they are processed and deleted

• transactional, timing, and ordering guarantees

• Each message is processed only once, by a single consumer

• Event retrieval is not defined by content / structure but its order
• FIFO, priority

producer consumer

queue

6

Message brokers
Message broker: a system that connects event producers with event
consumers.

• It receives messages from the producers and pushes them to the
consumers.

• A TCP connection is a simple messaging system which connects one
sender with one recipient.

• A general messaging system connects multiple producers to multiple
consumers by organizing messages into topics.

7

Message Brokerproducer

producer

producer consumer

consumer

consumer

- messages not removed after consumption

- multiple consumers can retrieve the same message

- many-to-many communication

- message content / structure matters for delivery

8

MB architecture advantages

• Multiple producers/consumers as concurrent clients

• Effective failure handling, crashes or disconnects

• Broker responsible for message durability

• Asynchronous communication, i.e. producer only needs to receive ack
from broker

9

Communication patterns (I)

Load balancing or shared subscription

• A logical producer/consumer can be implemented by multiple physical
tasks running in parallel

• Ιf a producer generates events with high rate, we can balance the load by
spawning several consumer processes

• The broker can choose to send messages to consumers in a round-robin
fashion

10

Communication patterns (II)

Fan-out

Several logical consumers (possibly implemented by several parallel physical
processes) can subscribe to the same topic, so that the message broker
delivers messages to all subscribed consumers in a broadcast fashion.

11

12

Brokers vs. Databases

• DBs keep data until explicitly deleted while MBs delete messages once
consumed.

• Use a database for long-term data storage!

• MBs assume a small working set. If consumers are slow, throughput might
degrade.

• DBs support secondary indexes for efficient search while MBs only offer
topic-based subscription.

• DB query results depend on a snapshot and clients are not notified if their
query result changes later.

13

Message delivery and ordering

Acknowledgements are messages from the client to the broker indicating
that the client has finished processing a message

• If an acknowledgement is not received, delivery is retried

• Re-delivery might cause re-ordering of messages

• Re-delivery complicates stream processing and fault-tolerance

• might process a message out-of-order or twice

14

How can we avoid this?

15

Publish/Subscribe Systems

publisher

publisher

publisher

publisher

subscriber

notify()

subscriber

notify()

subscriber

notify()

Subscription
management

Event Service

publish

pu
bli

sh
notify()

subscribe()

unsubscribe()

subscr
ibe

notify

unsubscribe

advertise(): information reg. future events

Publish/Subscribe Systems

17

Pub/Sub levels of de-coupling

• Space: interacting parties do not need to know each other

• Publishers do not know who / how many subscribers there are.

• Time: interacting parties do not need to actively participate in the
interaction at the same time

• Publishers can produce events when subscribers are disconnected.

• Synchronization: interacting parties are not blocked

• Subscribers get notified asynchronously while possibly performing
some other concurrent action.

18

Paradigm Space
Decoupling

Time
Decoupling

Synchronization
Decoupling

Message-passing

RPC/RMI

Asynchronous RPC

Futures

Message Queues

Pub/Sub Yes Yes Yes

Can you fill this in?

19

Pub/Sub vs. other paradigms
Paradigm Space

Decoupling
Time

Decoupling
Synchronization

Decoupling

Message-passing No No Producer-side

RPC/RMI No No Producer-side

Asynchronous RPC No No Yes

Futures No No Yes

Message Queues Yes Yes Producer-side

Pub/Sub Yes Yes Yes

20

Topic-based Pub/Sub
• Events are grouped into topics which are identified by keywords.

• Topics <—> Groups

• Subscribing to a topic T can be viewed as becoming a member of a group T.

• Publishing an event on topic T can be viewed as broadcasting the event to all
members of group T.

• Topic hierarchies allow topic organization according to containment
relationships.

• subscribing to a topic implicitly involves subscribing to all sub-topics of that

topic, too.

• Topic names are represented with URL-like notation and some systems also
allow the use of wildcards.

21

Content-based Pub/Sub
• Events are grouped according to event properties or contents.

• data attributes or meta-data.

• Consumers subscribe to events by specifying filters in a subscription
language.

• Filters define constraints in the form of name-value pairs and basic
comparison operators.

• Constraints can be logically combined to form complex event patterns.

• company == ‘Uber’ and price < 100

• Predecessors of Complex Event Processing (CEP) systems

22

Google Cloud Pub/Sub

Publishers and Subscribers are applications.

23

Use-cases
• Balancing workloads in network clusters

• tasks can be efficiently distributed among multiple workers, such as Google Compute Engine
instances.

• Distributing event notifications
• a service that accepts user signups can send notifications whenever a new user registers, and

downstream services can subscribe to receive notifications of the event.

• Refreshing distributed caches

• an application can publish invalidation events to update the IDs of objects that have changed.

• Logging to multiple systems
• a Google Compute Engine instance can write logs to the monitoring system, to a database for

later querying, and so on.

• Data streaming from various processes or devices

• a residential sensor can stream data to backend servers hosted in the cloud.

24

A publisher application
creates a topic and sends

messages to the topic.

Messages are
persisted until they are

delivered and
acknowledged by

subscribers.

The service forwards
messages from a topic to

all of its subscriptions,
individually. Both push/pull

are supported.

The subscriber receives
pending messages from

its subscription and
acknowledges each one to

the Pub/Sub service.

When a message is
acknowledged by the

subscriber, it is removed
from the subscription's

queue of messages.

25

Log-structured brokers

Logs as message brokers

• In typical message brokers, once a message is consumed it is deleted

• Log-based message brokers take a different approach and durably store
all events in a sequential (possibly partitioned) log

• A log is an append-only sequence of records on disk

• a producer generates messages by simply appending them to the log
and a consumer receives messages by reading the log sequentially

27

Partitions and offsets

• A log can be partitioned, so that each partition can be read and written
independently of others

• a topic is a set of partitions

• Within each partition, every message carries an offset, a monotonically
increasing sequence number

• Within a partition, all messages are totally ordered but there is no
ordering guarantee across partitions

28

29

Failure handling
• The broker does not need to wait for acknowledgements any more, but

simply record consumers' offsets periodically

• If a consumer fails, a new one can take over starting from the last
recorded offset of the failed consumer

• This might cause re-processing of messages if the failed consumer had
read messages later than its recorded offset

How can we avoid re-processing?

30

Logs vs. in-memory brokers
• Multiple consumers with different processing speeds: reading a

message doesn't delete it

• Coarse-grained load balancing: assign different partitions to different
consumers

• Limits on maximum parallelism: the number of the topic's partitions

• Processing delays: If a message is slow to process, this delays
processing of subsequent messages, as each partition is read by a single
thread

What would you use when priority is:
- latency but not ordering?
- throughput and ordering?

31

How long to keep the log?

• Log compaction: a (usually background) process that searches for log
records with the same key and merges the records by only keeping the
most recent value for each key.

• A key can also be completely removed if it is assigned a special value
(tombstone).

32

Lecture references

The material in this lecture was assembled from the following sources:

• Martin Kleppmann. Designing data-intensive applications (O’Reilly
Media)

• Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv.
35, 2 (June 2003)

• https://cloud.google.com/pubsub/docs/overview

33

https://cloud.google.com/pubsub/docs/overview

