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Streaming sources

Files, e.g. transaction logs


Sockets


IoT devices and sensors


Databases and KV stores


Message queues and brokers

Where do stream processors read data from?
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Challenges

• can be distributed

• out-of-sync sources may produce out-of-order streams


• can be connected to the network

• latency and unpredictable delays


• might be producing too fast

• stream processor needs to keep up and not shed load


• might be producing too slow or become idle

• stream processor should be able to make progress


• might fail (or seem as if they failed)

Streaming sources…
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Producers and consumers
• An event is typically generated by a producer (or publisher or sender) 

and processed by one or multiple consumers (or subscribers or 
recipients)


• Events are commonly grouped into the same topic 

• in a similar way batch data belonging to the same file are grouped 

together

• topics are commonly events of the same type: userCreated, 
userLoggedIn, userLoggedOut, userSentPayment
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Connecting producers to consumers
• Indirectly

• Producer writes to a file or database

• Consumer periodically polls and retrieves new data

• polling overhead, latency?


• Consumer receives a notification when new data is available

• how to implement triggers?


• Direct messaging

• Direct network communication, UDP multicast, TCP

• HTTP or RPC if the consumer exposes a service on the network

• Failure handling: application needs to be aware of message loss, 

producers and consumers always online
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Message queues
• Asynchronous point-to-point communication

• Lightweight buffer for temporary storage

• Messages stored on the queue until they are processed and deleted

• transactional, timing, and ordering guarantees


• Each message is processed only once, by a single consumer

• Event retrieval is not defined by content / structure but its order 
• FIFO, priority

producer consumer

queue
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Message brokers
Message broker: a system that connects event producers with event 
consumers.


• It receives messages from the producers and pushes them to the 
consumers.


• A TCP connection is a simple messaging system which connects one 
sender with one recipient.


• A general messaging system connects multiple producers to multiple 
consumers by organizing messages into topics.
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Message Brokerproducer

producer

producer consumer

consumer

consumer

- messages not removed after consumption

- multiple consumers can retrieve the same message

- many-to-many communication

- message content / structure matters for delivery
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MB architecture advantages

• Multiple producers/consumers as concurrent clients


• Effective failure handling, crashes or disconnects


• Broker responsible for message durability


• Asynchronous communication, i.e. producer only needs to receive ack 
from broker
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Communication patterns (I)

Load balancing or shared subscription


• A logical producer/consumer can be implemented by multiple physical 
tasks running in parallel


• Ιf a producer generates events with high rate, we can balance the load by 
spawning several consumer processes


• The broker can choose to send messages to consumers in a round-robin 
fashion
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Communication patterns (II)

Fan-out


Several logical consumers (possibly implemented by several parallel physical 
processes) can subscribe to the same topic, so that the message broker 
delivers messages to all subscribed consumers in a broadcast fashion.
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Brokers vs. Databases

• DBs keep data until explicitly deleted while MBs delete messages once 
consumed.

• Use a database for long-term data storage!


• MBs assume a small working set. If consumers are slow, throughput might 
degrade.


• DBs support secondary indexes for efficient search while MBs only offer 
topic-based subscription.


• DB query results depend on a snapshot and clients are not notified if their 
query result changes later.
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Message delivery and ordering

Acknowledgements are messages from the client to the broker indicating 
that the client has finished processing a message


• If an acknowledgement is not received, delivery is retried


• Re-delivery might cause re-ordering of messages


• Re-delivery complicates stream processing and fault-tolerance


• might process a message out-of-order or twice
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How can we avoid this?
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Publish/Subscribe Systems



publisher

publisher

publisher

publisher

subscriber 

notify()

subscriber 

notify()

subscriber 

notify()

Subscription 
management

Event Service

publish

pu
bli

sh
notify()

subscribe()

unsubscribe()

subscr
ibe

notify

unsubscribe

advertise(): information reg. future events 

Publish/Subscribe Systems
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Pub/Sub levels of de-coupling

• Space: interacting parties do not need to know each other


• Publishers do not know who / how many subscribers there are.


• Time: interacting parties do not need to actively participate in the 
interaction at the same time


• Publishers can produce events when subscribers are disconnected.


• Synchronization: interacting parties are not blocked


• Subscribers get notified asynchronously while possibly performing 
some other concurrent action.

18



Paradigm Space 
Decoupling

Time 
Decoupling

Synchronization 
Decoupling

Message-passing

RPC/RMI

Asynchronous RPC

Futures

Message Queues

Pub/Sub Yes Yes Yes

Can you fill this in?
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Pub/Sub vs. other paradigms
Paradigm Space 

Decoupling
Time 

Decoupling
Synchronization 

Decoupling

Message-passing No No Producer-side

RPC/RMI No No Producer-side

Asynchronous RPC No No Yes

Futures No No Yes

Message Queues Yes Yes Producer-side

Pub/Sub Yes Yes Yes
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Topic-based Pub/Sub
• Events are grouped into topics which are identified by keywords.


• Topics <—> Groups


• Subscribing to a topic T can be viewed as becoming a member of a group T.


• Publishing an event on topic T can be viewed as broadcasting the event to all 
members of group T.


• Topic hierarchies allow topic organization according to containment 
relationships.

• subscribing to a topic implicitly involves subscribing to all sub-topics of that 

topic, too.


• Topic names are represented with URL-like notation and some systems also 
allow the use of wildcards.
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Content-based Pub/Sub
• Events are grouped according to event properties or contents. 

• data attributes or meta-data.


• Consumers subscribe to events by specifying filters in a subscription 
language.


• Filters define constraints in the form of name-value pairs and basic 
comparison operators.


• Constraints can be logically combined to form complex event patterns.


• company == ‘Uber’ and price < 100


• Predecessors of Complex Event Processing (CEP) systems
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Google Cloud Pub/Sub

Publishers and Subscribers are applications.
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Use-cases
• Balancing workloads in network clusters


• tasks can be efficiently distributed among multiple workers, such as Google Compute Engine 
instances.


• Distributing event notifications 
• a service that accepts user signups can send notifications whenever a new user registers, and 

downstream services can subscribe to receive notifications of the event.

• Refreshing distributed caches


• an application can publish invalidation events to update the IDs of objects that have changed.


• Logging to multiple systems 
•  a Google Compute Engine instance can write logs to the monitoring system, to a database for 

later querying, and so on.

• Data streaming from various processes or devices


• a residential sensor can stream data to backend servers hosted in the cloud.
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A publisher application 
creates a topic and sends 

messages to the topic.

Messages are 
persisted until they are 

delivered and 
acknowledged by 

subscribers.

The service forwards 
messages from a topic to 

all of its subscriptions, 
individually. Both push/pull 

are supported.

The subscriber receives 
pending messages from 

its subscription and 
acknowledges each one to 

the Pub/Sub service.

When a message is 
acknowledged by the 

subscriber, it is removed 
from the subscription's 

queue of messages.
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Log-structured brokers



Logs as message brokers

• In typical message brokers, once a message is consumed it is deleted


• Log-based message brokers take a different approach and durably store 
all events in a sequential (possibly partitioned) log


• A log is an append-only sequence of records on disk


• a producer generates messages by simply appending them to the log 
and a consumer receives messages by reading the log sequentially
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Partitions and offsets

• A log can be partitioned, so that each partition can be read and written 
independently of others


• a topic is a set of partitions


• Within each partition, every message carries an offset, a monotonically 
increasing sequence number


• Within a partition, all messages are totally ordered but there is no 
ordering guarantee across partitions
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Failure handling
• The broker does not need to wait for acknowledgements any more, but 

simply record consumers' offsets periodically


• If a consumer fails, a new one can take over starting from the last 
recorded offset of the failed consumer


• This might cause re-processing of messages if the failed consumer had 
read messages later than its recorded offset

How can we avoid re-processing?
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Logs vs. in-memory brokers
• Multiple consumers with different processing speeds: reading a 

message doesn't delete it


• Coarse-grained load balancing: assign different partitions to different 
consumers


• Limits on maximum parallelism: the number of the topic's partitions


• Processing delays: If a message is slow to process, this delays 
processing of subsequent messages, as each partition is read by a single 
thread

What would you use when priority is: 
- latency but not ordering? 
- throughput and ordering?
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How long to keep the log?

• Log compaction: a (usually background) process that searches for log 
records with the same key and merges the records by only keeping the 
most recent value for each key.


• A key can also be completely removed if it is assigned a special value 
(tombstone).
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Lecture references

The material in this lecture was assembled from the following sources:


• Martin Kleppmann. Designing data-intensive applications (O’Reilly 
Media)


• Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie 
Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv. 
35, 2 (June 2003)


• https://cloud.google.com/pubsub/docs/overview 
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