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Languages for continuous data 
processing
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• Transforming languages define transformations specifying operations that process input 
streams and produce output streams.


• Declarative languages specify the expected results of the computation rather than the 
execution flow.


• Imperative languages are used to describe plans of operators the streams must flow 
through.


• Pattern-based languages specify conditions and actions to be taken when conditions are met.


• Conditions are commonly described as patterns that can match input stream events on 
type, content, timing constraints.


• Actions define how to produce results from the matches.

Language Types
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Three classes of operators:


• relation-to-relation: similar to standard SQL and define queries over 
tables.


• stream-to-relation: define tables by selecting portions of a stream.


• relation-to-stream: create streams through querying tables

Declarative language: CQL
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Select IStream(*) 
From S1 [Rows 5], S2 [Rows 10] 
Where S1.A = S2.A Last 5 elements of stream 

S1 and last 10 elements of 
S2

stream-to-relation

relation-to-relation

relation-to-stream

CQL Example
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CQL relation-to-stream operators

• Istream (for “insert stream”) applied to relation R contains a stream 
element <s, τ> whenever tuple s is in R(τ) − R(τ − 1).


• Dstream (for “delete stream”) applied to relation R contains a stream 
element <s, τ> whenever tuple s is in R(τ − 1) − R(τ).


• Rstream (for “relation stream”) applied to relation R contains a stream 
element <s, τ> whenever tuple s is in R at time τ.
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Imperative language: Aurora SQuAl

Queries are represented in graphical representation using boxes and arrows

Tumble Window

Tumble Window

Join(S1.A = S2.A)

S1

S2
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Composite subscription pattern language

A(X>0) & (B(Y=10);[timespan:5] C(Z<5))[within:15]

A, B, C are topics
X, Y, Z are inner fields

The rule fires when  
an item of type A having an attribute X > 0 enters the system and also  
an item of type B with Y = 10 is detected,  
followed (in a time interval of 5–15 s) by  
an item of type C with Z < 5.
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Streaming Operators
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Operator types (I)
• Single-Item Operators process stream elements one-by-one.


• selection, filtering, projection, renaming.


• Logic Operators define rules for complex pattern detection without order constraints.


• conjunction of items I1, I2, …, In is satisfied when all items have been detected. 

• disjunction of items I1, I2, …, In is satisfied when at least one item has been detected. 

• repetition of an item I of degree (m, n) is satisfied when I is detected at least m times 
but o more than n times. 

• negation of an item I is satisfied when I is not detected.
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Logic Operators Example

Select IStream(S1.A, S2.B) 
From S1 [Rows 50], S2 [Rows 50](A & B) || (C & D)

Explicit conjunction and disjunction Implicit conjunction in CQL

Consider events from 
stream S1 and stream S2
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Operator types (II)
• Sequence Operators capture the arrival of an ordered set of events.


• common in pattern languages


• events must have associated timestamps


• Iteration Operators define sequences of events or processing that 
satisfies a loop condition. 


• not commonly supported


• a termination condition must be defined, e.g. time limit
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timely::example(|scope| {  
 
    let (handle, stream) = scope.loop_variable(100, 1);  
    (0..10).to_stream(scope)  
           .concat(&stream)  
           .inspect(|x| println!("seen: {:?}", x))  
           .connect_loop(handle);  
}); 

t

(t, l1)

(t, (l1, l2))

Streaming Iteration Example
Terminate after 100 

iterations

Create the feedback 
loop
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Blocking vs. Non-Blocking operators

• A Blocking query operator can only return answers when it detects the 
end of its input.


• NOT IN, set difference and division, traditional SQL aggregates


• A Non-blocking query operator can produce answers incrementally as 
new input records arrive.


• projection, selection, union
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Window Operators

• Probably the most important operators in stream processing systems


• Almost universally supported across streaming systems and languages 
albeit with various names and semantics 

• Allow un-blocking the processing of blocking operators by defining 
bounded portions of the stream on which computations can be performed
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Window types (I)

• Time-based (logical) windows define their contents as a function of time.


• average price of items bought within the last 5 minutes


• Count-based (physical) windows define their contents according to the 
number of events.


• average price of last ten items bought
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Window types (II)
• Fixed windows have bound which don’t move


• events received between 1/1/2019 and 12/1/2019 
• Landmark windows have a fixed lower bound and the upper bound advances for every new event


• all events since 1/1/2019 
• Sliding windows have fixed size but both their bounds advance for new events


• last 10 events or event in the last minute 
• Tumble windows are non-overlapping fixed-size


• events every hour


• Custom windows have neither fixed bounds nor fixed size


• events in a period during which a user was active
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Flow Management Operators (I)
• Join operators merge two streams by matching elements satisfying a 

condition


• commonly applied on windows


• Union operators combine two or more streams without ordering 
guarantees


• elements have to be of the same type


• Difference operators take two streams and output elements present in 
the first but not in the second


• it is blocking and must be defined over a window
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Flow Management Operators (II)

• Duplicate/Copy Operator replicates a stream, commonly to be used as 
input to multiple downstream operators.


• Group by / Partition Operators split a stream into sub-streams according 
to a function or the event contents.


• one stream per customer Id


• round-robin assignment
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CQL GroupBy Example

Select IStream(Count(*))  

From S1 [Rows 1000]  

Group By S1.B

Count the number or 
events in the last 

1000 rows for each 
value of B
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What kind of queries can we 
express and support on data 

streams?
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Non-blocking (monotonic) queries are the only continuous queries that can 
be supported on data streams. 

Proposition: 

Only monotonic queries can be expressed by non-blocking operators.


Then: 
Can all monotonic queries be expressed using only non-blocking 
operators?
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Model and formalization (I)

A stream is a sequence of unbounded length, where tuples are ordered by 
their arrival time.


Sequence: Let t1, … ,tn be tuples from a relation R. The list S = [t1, … ,tn] is 
called a sequence, of length n, of tuples from R.


The empty sequence [ ] has length 0.


We use t ∈ S to denote that, for some 1 ≤ i ≤ n, ti = t.
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Model and formalization (II)

Pre-sequence (prefix): Let S = [t1, … ,tn] be a sequence and 0 < k ≤ n. 
Then, t1, … ,tk is the pre-sequence of S of length k, denoted by Sk .


[ ] is the zero-length pre-sequence of S. 


Partial Order: Let S and L be two sequences. Then, if for some k, Lk = S we 
say that S is a pre-sequence of L and write S ⊆ L. 


If k < n, we say that S is a proper pre-sequence of L and write S ⊂ L.
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Given a relation R, ⊆ is a partial order on sequences of tuples from R. 


Streaming operators take sequences (streams) as input and return 
sequences (streams) as output:

For each new input tuple in S, G adds zero, one, or several tuples to the 
output.


Let Gj(S) be the cumulative output produced by G up to step j.

S G G(S)
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Consider a sequence of length n, i.e., S = Sn. 


If G is a traditional (blocking) sum:


• what is Gj (S) for j < n?


• for j = n?

What if n = 5 and S = [3, 3, 4, 4, 5]?
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Consider a sequence of length n, i.e., S = Sn. 


If G is a continuous sum, so that it returns the sum of all tuples seen so far:


• what is Gj (S) for j < n?


• for j = n?

What if n = 5 and S = [3, 3, 4, 4, 5]?

Gj (S) ⊆ Gk (S), for j ≤ k — i.e., the output produced till 
step j is a pre-sequence of that produced till step k. 
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A null operator N is one where N(S) = [ ] for every S.


A non-null operator G is 


• blocking, when for every sequence S of length n, Gj (S) = [ ] for every j < 
n, and Gn(S) = G(S)


• non-blocking, when for every sequence S of length n, Gj (S) = G(Sj), for 
every j ≤ n.


• partially blocking, when it does not satisfy either definition, i.e., those 
where, for some S and j: [ ] ⊂ Gj(S) ⊂ G(Sj)
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What functions on streams can be expressed using non-blocking operators? 

Proposition: A function F(S) on a sequence S can be computed using a non-
blocking operator, iff F is monotonic with respect to the partial ordering ⊆.


A query Q on a stream S can be implemented by a non-blocking query operator 
iff Q(S) is monotonic with respect to ⊆. 


The traditional aggregate operators (max, avg, etc.) always return a sequence of 
length one and they are all non-monotonic, and therefore blocking.


Continuous count and sum are monotonic and non-blocking, and thus suitable 
for continuous queries.
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Non-blocking SQL

Let NB-SQL be the non-blocking subset of SQL that excludes non-
monotonic constructs:

• EXCEPT, NOT EXIST, NOT IN and ALL

• all standard blocking aggregates


Can we express all streaming (monotonic queries) with NB-SQL?
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Some queries expressed using aggregates are monotonic:


SELECT DeptNo  

FROM empl  

GROUP BY DeptNo  

HAVING SUM(empl.Sal) > 10000

The introduction of a new 
empl can only expand the 
set of departments that 

satisfy this query

However this sum query cannot be expressed without 
the use of aggregates!

31
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SQL extensions and SQL-like 
languages

32
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SQL extensions for streams
Why SQL-based approaches? 

• Ideally, we would like to use the same language for querying both streaming 
and static data.


Requirements (or why SQL is not enough) 

• Push-based model as opposed to the pull-based model of SQL, i.e. an 
application or client asks for the query results when they need them.


• The stream might never end in which case how to define blocking operators, 
e.g. groupBy?


• The data might be too large to store for future use.
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ESL: Expressive Stream Language

• Ad-hoc SQL queries


• Updates on database tables


• Continuous queries on data streams


• New streams (derived) are defined as virtual views in SQL


• Semantics are equivalent to having an append-only table to which new 
tuples are continuously added.
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Example: CREATE STREAM
CREATE STREAM OpenAuction( 

itemID INT, sellerID CHAR(10), 

start_price REAL, start_time TIMESTAMP) 

ORDER BY start_time SOURCE …

 It needs to define external 
source and timestamp field.

CREATE STREAM expensiveItems AS( 

SELECT itemID, start_price, start_time 

FROM OpenAuction WHERE start_price > 1000 

Derived stream as an append-
only table.
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User-Defined Aggregates (UDAs)

Constructs that allow the definition of custom aggregations using three 
statement groups:


• INITIALIZE: initialized local state.


• ITERATE: update state based on new element and current state.


• TERMINATE: produce the result.


Note that it is allowed to define and maintain local tables as state.
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Example: AVG UDA
AGGREGATE myavg(Next Int): Real 

{    TABLE state(tsum Int, cnt Int); 

      INITIALIZE: { 

          INSERT INTO state VALUES(Next, 1); 

      } 

      ITERATE: { 

          UPDATE state 

              SET tsum=tsum+Next, cnt=cnt+1; 

      } 

      TERMINATE: { 

          INSERT INTO RETURN 

              SELECT tsum/cnt FROM state; 

      } 

}

Allocated just before 
INITIALIAZE and 

deallocated just after 
TERMINATE.
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AGGREGATE mymin(Next Int): Int 
{    TABLE state(…); 
      INITIALIZE: { 

      } 

      ITERATE: { 

           

     } 

      TERMINATE: { 

      } 

}

Can you define a MIN UDA?
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AGGREGATE myavg(Next Int): Real 

{    TABLE state(tsum Int, cnt Int); 

      INITIALIZE: { 

          INSERT INTO state VALUES(Next, 1); 

      } 

      ITERATE: { 

          UPDATE state 

              SET tsum=tsum+Next, cnt=cnt+1; 

      } 

      TERMINATE: { 

          INSERT INTO RETURN 

              SELECT tsum/cnt FROM state; 

      } 

}

This is a blocking UDA: 
TERMINATE is executed 
once the stream is over.

Example: AVG UDA
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Example: Non-blocking AVG UDA
AGGREGATE myavg(Next Int): Real 
{    TABLE state(tsum Int, cnt Int); 
      INITIALIZE: { 
          INSERT INTO state VALUES(Next, 1); 
      } 

      ITERATE: { 
          UPDATE state 
              SET tsum=tsum+Next, cnt=cnt+1; 
      } 

      TERMINATE: {} 
}

Can we return results 
earlier than 

TERMINATE?

While iterating the 
stream elements 

maybe?
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Example: Non-blocking AVG UDA
AGGREGATE online_avg(Next Int): Real 
{    TABLE state(tsum Int, cnt Int); 
      INITIALIZE: { 
          INSERT INTO state VALUES(Next, 1); 
      } 

      ITERATE: { 
          UPDATE state 
              SET tsum=tsum+Next, cnt=cnt+1; 

  INSERT INTO RETURN 

    SELECT tsum/cnt FROM state 

    WHERE cnt % 200 = 0; 
      } 

      TERMINATE: {} 
}

Continuously return a result 
every 200 tuples.

If TERMINATE is empty, the 
aggregate is non-blocking.
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Pattern Queries with UDAs
• UDAs process streams tuple-per-tuple


• How can we write a UDA that detects a sequence of actions? 


• e.g. detect users who place an order, ask for a refund immediately, and then 
cancel the order


webevents(CustomerID, ItemID, Event, Amount, Time)

0
3

2
1order

refund
cancel
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Pattern-Matching UDA
AGGREGATE pattern(CustomerID Char, Next Char):(Char, Char)  
{    TABLE state(sno Int);  
       INITIALIZE : {  
         INSERT INTO state VALUES(0);  
         UPDATE state SET sno = 1 WHERE Next = ‘order’;}  
       ITERATE: {  
         UPDATE state SET sno = 0  
           WHERE NOT (sno = 1 AND Next = ‘refund’)  
             AND NOT (sno = 2 AND Next = ‘cancel’)  
             AND Next <> ‘order’  
         UPDATE state SET sno = 1 WHERE Next = ‘order’;  
         UPDATE state SET sno = sno+1  
           WHERE (sno = 1 AND Next = ‘refund’)  
             OR (sno = 2 AND Next = ‘cancel’)  
         INSERT INTO RETURN  
           SELECT CustomerID,‘pattern123’ FROM state  
             WHERE sno = 3;  
} }

Initialize state to 0
Check next 

event

Pattern 
failed

Order 
matched

Refund and 
cancel 

matched 

Output 
success!

0
3

2
1order

refund

cancel
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Pattern-Matching: a simpler approach
SELECT ‘modified-pattern123’, X.CustomerId 
FROM webevents  
    PARTITION BY CustomerId  
    AS PATTERN (X Y Z)  
WHERE  
    X.Event = ‘order’ AND  
    Y.Event = ‘rebate’ AND Y.ItemID = X.ItemID AND  
    Z.Event = ‘cancel’ AND Z.ItemID = Y.ItemID

Partitions the stream into 
substreams according to a key

A sequence of events that 
immediately follow one another

AS PATTERN (X V* Y W* Z) 

• Match zero or more successive events:

• Match within a time limit:
Z.Time - Y.Time < 60
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NB-Completeness

Proposition: Every computable monotonic function on timestamped data 
streams can be expressed using NB-UDAs and union


where


NB-UDAs are those where TERMINATE is empty.
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UDAs on a single Stream

Every monotonic function F on an input data stream can be computed by a 
UDA that uses three local tables, IN, TAPE, and OUT, and performs the 
following operations for each new arriving tuple:


1. Append the encoded new tuple to IN, 


2. Copy IN to TAPE, and compute F(IN) − OUT


3. Return the result obtained in 2 and append it to OUT.

Non-blocking
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Timestamped streams

Pre-sequence: Let S and R be two sequences ordered by their timestamp 
and Rτ be the set of tuples of R with timestamp less than or equal to τ > 0. 


If S = Rτ for some τ , then S is pre-sequence of R, denoted S ⊆τ R. 


In general, if S1, ..., Sn and R1, ..., Rn be timestamped sequences, then


(S1, ..., Sn) ⊆τ (R1, ..., Rn) when (S1, ..., Sn) = (R1, ..., Rn) for some τ .
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A unary operator G is monotonic if L1 ⊆τ S1 implies G(L1) ⊆τ G(S1). 


A binary operator H is monotonic when (L1, L2) ⊆τ (S1, S2) implies H(L1, L2) ⊆τ 
H(S1, S2).


For τ = 0, S τ = ∅ is an empty sequence. 


A query operator is null when it returns the empty sequence for every 
possible value of its argument(s).


A non-null unary operator G is non-blocking, when Gτ (S) = G(Sτ), for every τ.


A non-null binary operator G is non-blocking, when, Gτ (L, S) = G(Lτ , Sτ), for 
every τ.
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Union. Let ∪τ denote the stream operator implementing union, i.e. ∪τ returns, 
at any given time τ, the union of the τ-pre-sequences of its inputs: 


L ∪τ S = Lτ ∪ Sτ


Languages supporting union operators and non-blocking UDAs on data 
streams are complete, in the sense that they can express every monotonic 
function on their input.
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Consider two streams of phone-call records: StartCall(callID, time) 
and EndCall(callID, time) 

SELECT callID, length(time, tag) AS CallLength,  
FROM  
    (SELECT callID, time, ’start’ 
    FROM StartCall 
    UNION ALL  
    SELECT callID, time, ’end’  
    FROM EndCall) AS  
  CallRecord (callID, time, tag)  
GROUP BY callID;

Computes the length 
of each call

Union & UDA example
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AGGREGATE length(time, tag) : (CallLength)  
{    TABLE state(ttime);  
     INITIALIZE:  
     ITERATE :{  
       INSERT INTO state VALUES(time);  
       INSERT INTO RETURN  
         SELECT time-ttime FROM state  
         WHERE tag=’end’;  
       INSERT INTO RETURN  
         SELECT ttime-time FROM state  
         WHERE tag=’start’; 
     } 
}

51

Why do we need all INSERT blocks?



Vasiliki Kalavri | Boston University 2020

Summary

Today you learned:


• there are various types of languages for data streams


• patterns, transformations, declarative


• traditional blocking operators don’t work on streams


• non-blocking versions or windows


• how to define non-blocking aggregates


• NB-SQL can be extended with union and UDAs to express all non-
blocking, streaming queries
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