
Vasiliki Kalavri | Boston University 2020Vasiliki Kalavri | Boston University 2020

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

CS 591 K1:
Data Stream Processing and Analytics

Spring 2020
2/04: Streaming languages and operator semantics

mailto:vkalavri@bu.edu

Vasiliki Kalavri | Boston University 2020Vasiliki Kalavri | Boston University 2020

Languages for continuous data
processing

2

Vasiliki Kalavri | Boston University 2020

• Transforming languages define transformations specifying operations that process input
streams and produce output streams.

• Declarative languages specify the expected results of the computation rather than the
execution flow.

• Imperative languages are used to describe plans of operators the streams must flow
through.

• Pattern-based languages specify conditions and actions to be taken when conditions are met.

• Conditions are commonly described as patterns that can match input stream events on
type, content, timing constraints.

• Actions define how to produce results from the matches.

Language Types

3

Vasiliki Kalavri | Boston University 2020

Three classes of operators:

• relation-to-relation: similar to standard SQL and define queries over
tables.

• stream-to-relation: define tables by selecting portions of a stream.

• relation-to-stream: create streams through querying tables

Declarative language: CQL

4

Vasiliki Kalavri | Boston University 2020

Select IStream(*)
From S1 [Rows 5], S2 [Rows 10]
Where S1.A = S2.A Last 5 elements of stream

S1 and last 10 elements of
S2

stream-to-relation

relation-to-relation

relation-to-stream

CQL Example

5

Vasiliki Kalavri | Boston University 2020

CQL relation-to-stream operators

• Istream (for “insert stream”) applied to relation R contains a stream
element <s, τ> whenever tuple s is in R(τ) − R(τ − 1).

• Dstream (for “delete stream”) applied to relation R contains a stream
element <s, τ> whenever tuple s is in R(τ − 1) − R(τ).

• Rstream (for “relation stream”) applied to relation R contains a stream
element <s, τ> whenever tuple s is in R at time τ.

6

Vasiliki Kalavri | Boston University 2020

Imperative language: Aurora SQuAl

Queries are represented in graphical representation using boxes and arrows

Tumble Window

Tumble Window

Join(S1.A = S2.A)

S1

S2

7

Vasiliki Kalavri | Boston University 2020

Composite subscription pattern language

A(X>0) & (B(Y=10);[timespan:5] C(Z<5))[within:15]

A, B, C are topics
X, Y, Z are inner fields

The rule fires when
an item of type A having an attribute X > 0 enters the system and also
an item of type B with Y = 10 is detected,
followed (in a time interval of 5–15 s) by
an item of type C with Z < 5.

8

Vasiliki Kalavri | Boston University 2020

Streaming Operators

9

Vasiliki Kalavri | Boston University 2020

Operator types (I)
• Single-Item Operators process stream elements one-by-one.

• selection, filtering, projection, renaming.

• Logic Operators define rules for complex pattern detection without order constraints.

• conjunction of items I1, I2, …, In is satisfied when all items have been detected.

• disjunction of items I1, I2, …, In is satisfied when at least one item has been detected.

• repetition of an item I of degree (m, n) is satisfied when I is detected at least m times
but o more than n times.

• negation of an item I is satisfied when I is not detected.

10

Vasiliki Kalavri | Boston University 2020

Logic Operators Example

Select IStream(S1.A, S2.B)
From S1 [Rows 50], S2 [Rows 50](A & B) || (C & D)

Explicit conjunction and disjunction Implicit conjunction in CQL

Consider events from
stream S1 and stream S2

11

Vasiliki Kalavri | Boston University 2020

Operator types (II)
• Sequence Operators capture the arrival of an ordered set of events.

• common in pattern languages

• events must have associated timestamps

• Iteration Operators define sequences of events or processing that
satisfies a loop condition.

• not commonly supported

• a termination condition must be defined, e.g. time limit

12

Vasiliki Kalavri | Boston University 2020

timely::example(|scope| {  
 
 let (handle, stream) = scope.loop_variable(100, 1);  
 (0..10).to_stream(scope)  
 .concat(&stream)  
 .inspect(|x| println!("seen: {:?}", x))  
 .connect_loop(handle);  
});

t

(t, l1)

(t, (l1, l2))

Streaming Iteration Example
Terminate after 100

iterations

Create the feedback
loop

13

Vasiliki Kalavri | Boston University 2020

Blocking vs. Non-Blocking operators

• A Blocking query operator can only return answers when it detects the
end of its input.

• NOT IN, set difference and division, traditional SQL aggregates

• A Non-blocking query operator can produce answers incrementally as
new input records arrive.

• projection, selection, union

14

Vasiliki Kalavri | Boston University 2020

Window Operators

• Probably the most important operators in stream processing systems

• Almost universally supported across streaming systems and languages
albeit with various names and semantics

• Allow un-blocking the processing of blocking operators by defining
bounded portions of the stream on which computations can be performed

15

Vasiliki Kalavri | Boston University 2020

Window types (I)

• Time-based (logical) windows define their contents as a function of time.

• average price of items bought within the last 5 minutes

• Count-based (physical) windows define their contents according to the
number of events.

• average price of last ten items bought

16

Vasiliki Kalavri | Boston University 2020

Window types (II)
• Fixed windows have bound which don’t move

• events received between 1/1/2019 and 12/1/2019
• Landmark windows have a fixed lower bound and the upper bound advances for every new event

• all events since 1/1/2019
• Sliding windows have fixed size but both their bounds advance for new events

• last 10 events or event in the last minute
• Tumble windows are non-overlapping fixed-size

• events every hour

• Custom windows have neither fixed bounds nor fixed size

• events in a period during which a user was active

17

Vasiliki Kalavri | Boston University 2020

Flow Management Operators (I)
• Join operators merge two streams by matching elements satisfying a

condition

• commonly applied on windows

• Union operators combine two or more streams without ordering
guarantees

• elements have to be of the same type

• Difference operators take two streams and output elements present in
the first but not in the second

• it is blocking and must be defined over a window

18

Vasiliki Kalavri | Boston University 2020

Flow Management Operators (II)

• Duplicate/Copy Operator replicates a stream, commonly to be used as
input to multiple downstream operators.

• Group by / Partition Operators split a stream into sub-streams according
to a function or the event contents.

• one stream per customer Id

• round-robin assignment

19

Vasiliki Kalavri | Boston University 2020

CQL GroupBy Example

Select IStream(Count(*))

From S1 [Rows 1000]

Group By S1.B

Count the number or
events in the last

1000 rows for each
value of B

20

Vasiliki Kalavri | Boston University 2020

What kind of queries can we
express and support on data

streams?

21

Vasiliki Kalavri | Boston University 2020

Non-blocking (monotonic) queries are the only continuous queries that can
be supported on data streams.

Proposition:

Only monotonic queries can be expressed by non-blocking operators.

Then:
Can all monotonic queries be expressed using only non-blocking
operators?

22

Vasiliki Kalavri | Boston University 2020

Model and formalization (I)

A stream is a sequence of unbounded length, where tuples are ordered by
their arrival time.

Sequence: Let t1, … ,tn be tuples from a relation R. The list S = [t1, … ,tn] is
called a sequence, of length n, of tuples from R.

The empty sequence [] has length 0.

We use t ∈ S to denote that, for some 1 ≤ i ≤ n, ti = t.

23

Vasiliki Kalavri | Boston University 2020

Model and formalization (II)

Pre-sequence (prefix): Let S = [t1, … ,tn] be a sequence and 0 < k ≤ n.
Then, t1, … ,tk is the pre-sequence of S of length k, denoted by Sk .

[] is the zero-length pre-sequence of S.

Partial Order: Let S and L be two sequences. Then, if for some k, Lk = S we
say that S is a pre-sequence of L and write S ⊆ L.

If k < n, we say that S is a proper pre-sequence of L and write S ⊂ L.

24

Vasiliki Kalavri | Boston University 2020

Given a relation R, ⊆ is a partial order on sequences of tuples from R.

Streaming operators take sequences (streams) as input and return
sequences (streams) as output:

For each new input tuple in S, G adds zero, one, or several tuples to the
output.

Let Gj(S) be the cumulative output produced by G up to step j.

S G G(S)

25

Vasiliki Kalavri | Boston University 2020

Consider a sequence of length n, i.e., S = Sn.

If G is a traditional (blocking) sum:

• what is Gj (S) for j < n?

• for j = n?

What if n = 5 and S = [3, 3, 4, 4, 5]?

26

Vasiliki Kalavri | Boston University 2020

Consider a sequence of length n, i.e., S = Sn.

If G is a continuous sum, so that it returns the sum of all tuples seen so far:

• what is Gj (S) for j < n?

• for j = n?

What if n = 5 and S = [3, 3, 4, 4, 5]?

Gj (S) ⊆ Gk (S), for j ≤ k — i.e., the output produced till
step j is a pre-sequence of that produced till step k.

27

Vasiliki Kalavri | Boston University 2020

A null operator N is one where N(S) = [] for every S.

A non-null operator G is

• blocking, when for every sequence S of length n, Gj (S) = [] for every j <
n, and Gn(S) = G(S)

• non-blocking, when for every sequence S of length n, Gj (S) = G(Sj), for
every j ≤ n.

• partially blocking, when it does not satisfy either definition, i.e., those
where, for some S and j: [] ⊂ Gj(S) ⊂ G(Sj)

28

Vasiliki Kalavri | Boston University 2020

What functions on streams can be expressed using non-blocking operators?

Proposition: A function F(S) on a sequence S can be computed using a non-
blocking operator, iff F is monotonic with respect to the partial ordering ⊆.

A query Q on a stream S can be implemented by a non-blocking query operator
iff Q(S) is monotonic with respect to ⊆.

The traditional aggregate operators (max, avg, etc.) always return a sequence of
length one and they are all non-monotonic, and therefore blocking.

Continuous count and sum are monotonic and non-blocking, and thus suitable
for continuous queries.

29

Vasiliki Kalavri | Boston University 2020

Non-blocking SQL

Let NB-SQL be the non-blocking subset of SQL that excludes non-
monotonic constructs:

• EXCEPT, NOT EXIST, NOT IN and ALL

• all standard blocking aggregates

Can we express all streaming (monotonic queries) with NB-SQL?

30

Vasiliki Kalavri | Boston University 2020

Some queries expressed using aggregates are monotonic:

SELECT DeptNo

FROM empl

GROUP BY DeptNo

HAVING SUM(empl.Sal) > 10000

The introduction of a new
empl can only expand the
set of departments that

satisfy this query

However this sum query cannot be expressed without
the use of aggregates!

31

Non-blocking SQL

Vasiliki Kalavri | Boston University 2020

SQL extensions and SQL-like
languages

32

Vasiliki Kalavri | Boston University 2020

SQL extensions for streams
Why SQL-based approaches?

• Ideally, we would like to use the same language for querying both streaming
and static data.

Requirements (or why SQL is not enough)

• Push-based model as opposed to the pull-based model of SQL, i.e. an
application or client asks for the query results when they need them.

• The stream might never end in which case how to define blocking operators,
e.g. groupBy?

• The data might be too large to store for future use.

33

Vasiliki Kalavri | Boston University 2020

ESL: Expressive Stream Language

• Ad-hoc SQL queries

• Updates on database tables

• Continuous queries on data streams

• New streams (derived) are defined as virtual views in SQL

• Semantics are equivalent to having an append-only table to which new
tuples are continuously added.

34

Vasiliki Kalavri | Boston University 2020

Example: CREATE STREAM
CREATE STREAM OpenAuction(

itemID INT, sellerID CHAR(10),

start_price REAL, start_time TIMESTAMP)

ORDER BY start_time SOURCE …

 It needs to define external
source and timestamp field.

CREATE STREAM expensiveItems AS(

SELECT itemID, start_price, start_time

FROM OpenAuction WHERE start_price > 1000

Derived stream as an append-
only table.

35

Vasiliki Kalavri | Boston University 2020

User-Defined Aggregates (UDAs)

Constructs that allow the definition of custom aggregations using three
statement groups:

• INITIALIZE: initialized local state.

• ITERATE: update state based on new element and current state.

• TERMINATE: produce the result.

Note that it is allowed to define and maintain local tables as state.

36

Vasiliki Kalavri | Boston University 2020

Example: AVG UDA
AGGREGATE myavg(Next Int): Real

{ TABLE state(tsum Int, cnt Int);

 INITIALIZE: {

 INSERT INTO state VALUES(Next, 1);

 }

 ITERATE: {

 UPDATE state

 SET tsum=tsum+Next, cnt=cnt+1;

 }

 TERMINATE: {

 INSERT INTO RETURN

 SELECT tsum/cnt FROM state;

 }

}

Allocated just before
INITIALIAZE and

deallocated just after
TERMINATE.

37

Vasiliki Kalavri | Boston University 2020

AGGREGATE mymin(Next Int): Int
{ TABLE state(…);
 INITIALIZE: {

 }

 ITERATE: {

 }

 TERMINATE: {

 }

}

Can you define a MIN UDA?

38

Vasiliki Kalavri | Boston University 2020

AGGREGATE myavg(Next Int): Real

{ TABLE state(tsum Int, cnt Int);

 INITIALIZE: {

 INSERT INTO state VALUES(Next, 1);

 }

 ITERATE: {

 UPDATE state

 SET tsum=tsum+Next, cnt=cnt+1;

 }

 TERMINATE: {

 INSERT INTO RETURN

 SELECT tsum/cnt FROM state;

 }

}

This is a blocking UDA:
TERMINATE is executed
once the stream is over.

Example: AVG UDA

39

Vasiliki Kalavri | Boston University 2020

Example: Non-blocking AVG UDA
AGGREGATE myavg(Next Int): Real
{ TABLE state(tsum Int, cnt Int);
 INITIALIZE: {
 INSERT INTO state VALUES(Next, 1);
 }

 ITERATE: {
 UPDATE state
 SET tsum=tsum+Next, cnt=cnt+1;
 }

 TERMINATE: {}
}

Can we return results
earlier than

TERMINATE?

While iterating the
stream elements

maybe?

40

Vasiliki Kalavri | Boston University 2020

Example: Non-blocking AVG UDA
AGGREGATE online_avg(Next Int): Real
{ TABLE state(tsum Int, cnt Int);
 INITIALIZE: {
 INSERT INTO state VALUES(Next, 1);
 }

 ITERATE: {
 UPDATE state
 SET tsum=tsum+Next, cnt=cnt+1;

 INSERT INTO RETURN

 SELECT tsum/cnt FROM state

 WHERE cnt % 200 = 0;
 }

 TERMINATE: {}
}

Continuously return a result
every 200 tuples.

If TERMINATE is empty, the
aggregate is non-blocking.

41

Vasiliki Kalavri | Boston University 2020

Pattern Queries with UDAs
• UDAs process streams tuple-per-tuple

• How can we write a UDA that detects a sequence of actions?

• e.g. detect users who place an order, ask for a refund immediately, and then
cancel the order

webevents(CustomerID, ItemID, Event, Amount, Time)

0
3

2
1order

refund
cancel

42

Vasiliki Kalavri | Boston University 2020

Pattern-Matching UDA
AGGREGATE pattern(CustomerID Char, Next Char):(Char, Char)
{ TABLE state(sno Int);
 INITIALIZE : {
 INSERT INTO state VALUES(0);
 UPDATE state SET sno = 1 WHERE Next = ‘order’;}
 ITERATE: {
 UPDATE state SET sno = 0
 WHERE NOT (sno = 1 AND Next = ‘refund’)
 AND NOT (sno = 2 AND Next = ‘cancel’)
 AND Next <> ‘order’
 UPDATE state SET sno = 1 WHERE Next = ‘order’;
 UPDATE state SET sno = sno+1
 WHERE (sno = 1 AND Next = ‘refund’)
 OR (sno = 2 AND Next = ‘cancel’)
 INSERT INTO RETURN
 SELECT CustomerID,‘pattern123’ FROM state
 WHERE sno = 3;
} }

Initialize state to 0
Check next

event

Pattern
failed

Order
matched

Refund and
cancel

matched

Output
success!

0
3

2
1order

refund

cancel

43

Vasiliki Kalavri | Boston University 2020

Pattern-Matching: a simpler approach
SELECT ‘modified-pattern123’, X.CustomerId
FROM webevents
 PARTITION BY CustomerId
 AS PATTERN (X Y Z)
WHERE
 X.Event = ‘order’ AND
 Y.Event = ‘rebate’ AND Y.ItemID = X.ItemID AND
 Z.Event = ‘cancel’ AND Z.ItemID = Y.ItemID

Partitions the stream into
substreams according to a key

A sequence of events that
immediately follow one another

AS PATTERN (X V* Y W* Z)

• Match zero or more successive events:

• Match within a time limit:
Z.Time - Y.Time < 60

44

Vasiliki Kalavri | Boston University 2020

NB-Completeness

Proposition: Every computable monotonic function on timestamped data
streams can be expressed using NB-UDAs and union

where

NB-UDAs are those where TERMINATE is empty.

45

Vasiliki Kalavri | Boston University 2020

UDAs on a single Stream

Every monotonic function F on an input data stream can be computed by a
UDA that uses three local tables, IN, TAPE, and OUT, and performs the
following operations for each new arriving tuple:

1. Append the encoded new tuple to IN,

2. Copy IN to TAPE, and compute F(IN) − OUT

3. Return the result obtained in 2 and append it to OUT.

Non-blocking

46

Vasiliki Kalavri | Boston University 2020

Timestamped streams

Pre-sequence: Let S and R be two sequences ordered by their timestamp
and Rτ be the set of tuples of R with timestamp less than or equal to τ > 0.

If S = Rτ for some τ , then S is pre-sequence of R, denoted S ⊆τ R.

In general, if S1, ..., Sn and R1, ..., Rn be timestamped sequences, then

(S1, ..., Sn) ⊆τ (R1, ..., Rn) when (S1, ..., Sn) = (R1, ..., Rn) for some τ .

47

Vasiliki Kalavri | Boston University 2020

A unary operator G is monotonic if L1 ⊆τ S1 implies G(L1) ⊆τ G(S1).

A binary operator H is monotonic when (L1, L2) ⊆τ (S1, S2) implies H(L1, L2) ⊆τ
H(S1, S2).

For τ = 0, S τ = ∅ is an empty sequence.

A query operator is null when it returns the empty sequence for every
possible value of its argument(s).

A non-null unary operator G is non-blocking, when Gτ (S) = G(Sτ), for every τ.

A non-null binary operator G is non-blocking, when, Gτ (L, S) = G(Lτ , Sτ), for
every τ.

48

Vasiliki Kalavri | Boston University 2020

Union. Let ∪τ denote the stream operator implementing union, i.e. ∪τ returns,
at any given time τ, the union of the τ-pre-sequences of its inputs:

L ∪τ S = Lτ ∪ Sτ

Languages supporting union operators and non-blocking UDAs on data
streams are complete, in the sense that they can express every monotonic
function on their input.

49

Vasiliki Kalavri | Boston University 2020

Consider two streams of phone-call records: StartCall(callID, time)
and EndCall(callID, time)

SELECT callID, length(time, tag) AS CallLength,
FROM
 (SELECT callID, time, ’start’
 FROM StartCall
 UNION ALL
 SELECT callID, time, ’end’
 FROM EndCall) AS
 CallRecord (callID, time, tag)
GROUP BY callID;

Computes the length
of each call

Union & UDA example

50

Vasiliki Kalavri | Boston University 2020

AGGREGATE length(time, tag) : (CallLength)
{ TABLE state(ttime);
 INITIALIZE:
 ITERATE :{
 INSERT INTO state VALUES(time);
 INSERT INTO RETURN
 SELECT time-ttime FROM state
 WHERE tag=’end’;
 INSERT INTO RETURN
 SELECT ttime-time FROM state
 WHERE tag=’start’;
 }
}

51

Why do we need all INSERT blocks?

Vasiliki Kalavri | Boston University 2020

Summary

Today you learned:

• there are various types of languages for data streams

• patterns, transformations, declarative

• traditional blocking operators don’t work on streams

• non-blocking versions or windows

• how to define non-blocking aggregates

• NB-SQL can be extended with union and UDAs to express all non-
blocking, streaming queries

52

Vasiliki Kalavri | Boston University 2020

Lecture references
• Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From

data stream to complex event processing. ACM Comput. Surv. 44, 3, Article 15 (June
2012).

• Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Data Stream Management:
Processing High-Speed Data Streams. Springer-Verlag, Berlin, Heidelberg.

• David Maier, Jin Li, Peter Tucker, Kristin Tufte, and Vassilis Papadimos. Semantics of
data streams and operators. In Proceedings of the 10th international conference on
Database Theory (ICDT’05).

• Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Query languages and data models for
database sequences and data streams. In Proceedings of the Thirtieth international
conference on Very large data bases - Volume 30 (VLDB ’04).

53

