
Vasiliki Kalavri | Boston University 2020

CS 591 K1:
Data Stream Processing and Analytics

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

Spring 2020

2/25: State Management

mailto:vkalavri@bu.edu

Vasiliki Kalavri | Boston University 2020

Logic

State
<k, v> <#Brexit, 520>

<#WorldCup, 480>

<#StarWars, 300>

<#Brexit>

<#Brexit, 521>

<#WorldCup, 480>

<#StarWars, 300>

<#Brexit, 521>

Any non-trivial streaming
computation maintains state:

• rolling aggregations

• window contents

• input offsets

• machine learning models

State in dataflow computations

2

Vasiliki Kalavri | Boston University 2020

• No explicit state primitives

• Users define state using arbitrary
types

• The system is unaware of which
parts of an operator constitute state

Streaming state

3

• Explicit state primitives including state
types and interfaces

• The system is aware of state and can
transparently checkpoint it, restore it, re-
scale it

Unmanaged Managed

What are the advantages and disadvantages of each approach?

Vasiliki Kalavri | Boston University 2020

• Copy, checkpoint, restore, merge, split, query, subscribe, …

State operations and types

4

Consider you are designing a state interface. What
operations should state support?

What state types can you think of?

• Count, sum, list, map, …

Vasiliki Kalavri | Boston University 2020

All data maintained by a task and used to compute results: a local or instance variable
that is accessed by a task’s business logic

Operator state is scoped to an operator task, i.e. records processed by the same
parallel task have access to the same state

• It cannot be accessed by other parallel tasks of the same or different operators

Keyed state is scoped to a key defined in the operator’s input records

• Flink maintains one state instance per key value and partitions all records with the

same key to the operator task that maintains the state for this key

• State access is automatically scoped to the key of the current record so that all

records with the same key access the same state

State management in Apache Flink

5

Vasiliki Kalavri | Boston University 2020

Operator state Keyed state

State types

6

Vasiliki Kalavri | Boston University 2020

A pluggable component that determines how state is stored, accessed, and
maintained.

State backends are responsible for:

• local state management

• checkpointing state to remote and persistent storage, e.g. a distributed filesystem or a

database system

• Available state backends in Flink:

• In-memory

• File system

• RocksDB

State backends

7

Vasiliki Kalavri | Boston University 2020

MemoryStateBackend
• Stores state as regular objects on TaskManager’s heap
• Low read/write latencies
• OutOfMemoryError if large grows too large, GC pauses
• Checkpoints sent to JobManager's heap memory, i.e. the state is lost in case of failure
• Use only for development and debugging purposes!

FsStateBackend
• Stores state on TaskManager’s heap but checkpoints it to a remote file system
• In-memory speed for local accesses and fault tolerance
• Limited to TaskManager’s memory and might suffer from GC pauses

Which backend to choose?

8

Vasiliki Kalavri | Boston University 2020

RocksDBStateBackend
• Stores all state into embedded RocksDB instances
• Accesses require de/serialization
• Checkpoints state to a remote file system and supports incremental

checkpoints
• Use for applications with very large state

Which backend to choose?

9

Vasiliki Kalavri | Boston University 2020

RocksDB

10

RocksDB is an LSM-tree storage engine
with key/value interface, where keys
and values are arbitrary byte streams.

 https://rocksdb.org/

https://www.ververica.com/blog/manage-rocksdb-memory-size-apache-flink

https://rocksdb.org/
https://www.ververica.com/blog/manage-rocksdb-memory-size-apache-flink

Vasiliki Kalavri | Boston University 2020

• RocksDB is a persistent key value store: data lives on disk, state can grow larger than
available memory and will not be lost upon failure.

• Keys and values are arbitrary byte arrays: serialization and deserialization is required to
access the state via a Flink program.

• The keys are ordered according to a user-specified comparator function.

Basic operations

• Get(key): fetch a single key-value from the DB

• Put(key, val): insert a single key-value into the DB

• Iterator/RangeScan: seek to a specified key and then scan one key at a time from

that point (keys are sorted)

• Merge: a lazy read-modify-write

RocksDB

11

Vasiliki Kalavri | Boston University 2020

In conf/flink.conf.yaml:

Supported backends are 'jobmanager', 'filesystem', ‘rocksdb'

state.backend: rocksdb

Directory for checkpoints filesystem

state.checkpoints.dir: path/to/checkpoint/folder/

In your Flink program:

val env = StreamExecutionEnvironment.getExecutionEnvironment
val checkpointPath: String = ???

// configure path for checkpoints on the remote filesystem
val backend = new RocksDBStateBackend(checkpointPath)

// configure the state backend
env.setStateBackend(backend)

Configuring the state backend

12

Vasiliki Kalavri | Boston University 2020

• ValueState[T]: a single value of type T
• ValueState.value()

• ValueState.update(value: T)

• ListState[T]: a list of elements of type T
• ListState.add(value: T)

• ListState.addAll(values: java.util.List[T]).

• List State.get(): Iterable[T]

• ListState.update(values: java.util.List[T])

Flink’s state primitives

13

Vasiliki Kalavri | Boston University 2020

• MapState[K, V]: a map of keys and values
• get(key: K), put(key: K, value: V), contains(key: K),
remove(key: K)

• iterators over the contained entries, keys, and values

• ReducingState[T]: aggregates values using a ReduceFunction
• ReducingState.add(value: T)

• ReducingState.get()

• AggregatingState[I, O]: aggregates values using an
AggregateFunction

Flink’s state primitives

14

Vasiliki Kalavri | Boston University 2020

val sensorData: DataStream[Reading] = ???

// partition and key the stream on the sensor ID
val keyedData: KeyedStream[Reading, String] =
 sensorData
 .keyBy(_.id)

// apply a stateful FlatMapFunction on the keyed stream
val alerts: DataStream[(String, Double, Double)] =
 keyedData
 .flatMap(new TemperatureAlertFunction(1.7))

Using state in Flink

15

KeyedStream

State access inside the
flatMap will be scoped to
the key being processed

Vasiliki Kalavri | Boston University 2020

• To create a state object, we have to register a StateDescriptor with
Flink’s runtime via the RuntimeContext, which is exposed by
RichFunctions (RichFlatMapFunction, RichMapFunction,
(Co)ProcessFunction).

• The StateDescriptor is specific to the state primitive and includes
the name of the state and the data types of the state:

• The state name is scoped to the operator so that a function can have more than

one state object by registering multiple state descriptors.

• The data types handled by the state are specified as Class or
TypeInformation objects.

16

Registering state

Vasiliki Kalavri | Boston University 2020

class TemperatureAlertFunction(val threshold: Double)
extends RichFlatMapFunction[Reading, (String, Double, Double)] {

// the state handle object
private var lastTempState: ValueState[Double] = _

override def open(parameters: Configuration): Unit = {
// create state descriptor
val lastTempDescriptor =
new ValueStateDescriptor[Double]("lastTemp", classOf[Double])
// obtain the state handle
lastTempState = getRuntimeContext.getState[Double](lastTempDescriptor)
}
…

}

Using state in Flink

17

1.
declare state handle

2.
assign name and get the state handle

In the operator
(FlatMap) class

In the open() method

Vasiliki Kalavri | Boston University 2020

class TemperatureAlertFunction(val threshold: Double)
extends RichFlatMapFunction[SensorReading, (String, Double, Double)] {
…

override def flatMap(
reading: SensorReading,
out: Collector[(String, Double, Double)]): Unit = {

// fetch the last temperature from state
val lastTemp = lastTempState.value()
// check if we need to emit an alert
val tempDiff = (reading.temperature - lastTemp).abs
if (tempDiff > threshold) {
// temperature changed by more than the threshold
out.collect((reading.id, reading.temperature, tempDiff))
}
// update lastTemp state
this.lastTempState.update(reading.temperature)
}
}

Using state in Flink

18

3. get state value

4. update state

This is the state of the
current key (sensor id)

Vasiliki Kalavri | Boston University 2020

Use keyed state to store and access state in the context of a key attribute:

• For each distinct value of the key attribute, Flink maintains one state instance.

• The keyed state instances of a function are distributed across all parallel tasks of

the function’s operator.

Keyed state can only be used by functions that are applied on a
KeyedStream:

• When the processing method of a function with keyed input is called, Flink’s runtime

automatically puts all keyed state objects of the function into the context of the key
of the record that is passed by the function call.

• A function can only access the state that belongs to the record it currently
processes.

19

Keyed state scope

Vasiliki Kalavri | Boston University 2020

StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment(); 
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); 

// taxi ride events (start, end) 
DataStream<TaxiRide> rides = env.addSource(…)).keyBy("rideId"); 

// taxi fare events (payment, tip) 
DataStream<TaxiFare> fares = env.addSource(…).keyBy("rideId"); 

// match ride and fare events 
DataStream<Tuple2<TaxiRide, TaxiFare>> connectedRides = rides 
 .connect(fares)  
 .flatMap(new MatchFunction()); 

Java example

20

Vasiliki Kalavri | Boston University 2020

public static class EnrichmentFunction extends RichCoFlatMapFunction<TaxiRide, TaxiFare, Tuple2<TaxiRide, TaxiFare>> { 
 // define the state primitives here 
 private ValueState<TaxiRide> rideState;  
 private ValueState<TaxiFare> fareState;  
 
 @Override 
 public void open(Configuration config) {
 // initialize the state descriptors here 
 rideState = getRuntimeContext().getState(new ValueStateDescriptor<>("saved ride", TaxiRide.class)); 
 fareState = getRuntimeContext().getState(new ValueStateDescriptor<>("saved fare", TaxiFare.class)); 
 }  
 
 @Override 
 public void flatMap1(TaxiRide ride, Collector<Tuple2<TaxiRide, TaxiFare>> out) throws Exception { 
 TaxiFare fare = fareState.value(); 
 if (fare != null) { // a matching fare exists 
 fareState.clear(); // always clear the state you don’t need anymore! 
 out.collect(new Tuple2(ride, fare)); 
 } else {  
 rideState.update(ride); // no matching fare -> store the ride 
 } 
 }  
 
 @Override 
 public void flatMap2(TaxiFare fare, Collector<Tuple2<TaxiRide, TaxiFare>> out) throws Exception { 
 // similar logic for processing fare events 
 } 
 }  
}

Java example (cont.)

21

Vasiliki Kalavri | Boston University 2020

List<T> snapshotState(long checkpointId, long timestamp)
void restoreState(List<T> state)

Operator state

22

• A function can work with operator list state by implementing the ListCheckpointed
interface

• snapshotState() is invoked when Flink triggers a checkpoint of the stateful
function.

• restoreState() is always invoked when the job is started or in the case of a failure.

Vasiliki Kalavri | Boston University 2020

public static class CounterSource extends RichParallelSourceFunction<Long> implements ListCheckpointed<Long> {

 /** current offset for exactly once semantics */
 private Long offset = 0L;
 private volatile boolean isRunning = true;

 @Override
 public void run(SourceContext<Long> ctx) {
 final Object lock = ctx.getCheckpointLock();

 while (isRunning) {
 // output and state update are atomic
 synchronized (lock) {
 ctx.collect(offset);
 offset += 1;
 }
 }
 }

 @Override
 public List<Long> snapshotState(long checkpointId, long checkpointTimestamp) {
 return Collections.singletonList(offset);
 }

 @Override
 public void restoreState(List<Long> state) {
 for (Long s : state)
 offset = s;
 }
}

A stateful source

23

get a lock to make output and state update atomic

Vasiliki Kalavri | Boston University 2020

• Working with State: https://ci.apache.org/projects/flink/flink-docs-
release-1.10/dev/stream/state/state.html

• Managing State in Apache Flink - Tzu-Li (Gordon) Tai: https://
www.youtube.com/watch?v=euFMWFDThiE

• Webinar: Deep Dive on Apache Flink State - Seth Wiesman: https://
www.youtube.com/watch?v=9GF8Hwqzwnk

Further resources

24

https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/stream/state/state.html
https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/stream/state/state.html
https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/stream/state/state.html
https://www.youtube.com/watch?v=euFMWFDThiE
https://www.youtube.com/watch?v=euFMWFDThiE
https://www.youtube.com/watch?v=9GF8Hwqzwnk
https://www.youtube.com/watch?v=9GF8Hwqzwnk

