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Today’s topics

• High-availability and fault-tolerance in distributed stream processing 

• Recovery semantics and guarantees 

• Exactly-once processing in Apache Beam / Google Cloud Dataflow
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Logic

State
<k, v> <#Brexit, 520> 

<#WorldCup, 480> 

<#StarWars, 300>

Any non-trivial streaming 
computation maintains state:


• rolling aggregations

• window contents

• input offsets

• machine learning models

State in dataflow computations
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Distributed streaming systems will fail

• how can we guard state against failures and guarantee correct results 
after recovery? 

• how can we ensure minimal downtime and fast recovery? 

• how can we hide recovery side-effects from downstream applications?
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What is a failure?

op

1. receive an event

2. store in local buffer
and possibly update state

3. produce output

5

mi mo



Vasiliki Kalavri | Boston University 2020

What is a failure?

op

1. receive an event

2. store in local buffer
and possibly update state

3. produce output

5

mi mo



Vasiliki Kalavri | Boston University 2020

What is a failure?

op

1. receive an event

2. store in local buffer
and possibly update state

3. produce output

5

mi mo
Was mi fully processed?

Was mo delivered downstream?



Vasiliki Kalavri | Boston University 2020

What is a failure?

op

1. receive an event

2. store in local buffer
and possibly update state

3. produce output

What can go wrong: 
• lost events 
• duplicate or lost state updates 
• wrong result

5

mi mo
Was mi fully processed?

Was mo delivered downstream?
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A simple system model

stream 
sources

N1 NKN2 …input queue output queue
primary nodes

secondary nodes

other 
apps

I1

I2

O1

O2

N’1 N’KN’2 …I’1

I’2

O’1 O’2

6



Vasiliki Kalavri | Boston University 2020

Assumptions

Ni
primary

secondary

I1

I2

O1

O2

N’iI’1

I’2

O’1 O’2

• The communication network 
ensures order-preserving, reliable 
message transport, e.g. TCP. 

• Failures are single-node and fail-
stop, i.e. no network partitions or 
multiple simultaneous failures are 
considered. 

• The secondary node uses keep-
alive requests to detect primary 
failures.
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Recovery types
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Recovery types
• Precise recovery (exactly-once) 

• It hides the effects of a failure perfectly 
• Post-failure output is identical to no-failure

• Rollback recovery (at-least-once) 
• It avoids information loss 
• The output may contain duplicates 
• A backup needs to rebuild state of the failed node

• Gap recovery (at-most-once) 
• It drops data during failure 
• The backup starts from most recent information
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Recovery semantics

Given a dataflow Q, let Oe be the output stream produced by input e. In the event of a 
failure, let Of be the pre-failure execution of the primary and O’ the output produced by the 
secondary after recovery. 

• Precise recovery guarantees Of + O’ = Oe 
• Rollback recovery allows duplicate tuples downstream: 

• repeating: duplicate tuples are identical to those produced by the primary 
• convergent: duplicate tuples are different but eliminating them leads to output identical 

to an output without failure 
• divergent: duplicate tuples are different and eliminating them produces different output

9
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Outputs after recovery

10

Recovery type Before failure After failure

Precise t1 t2 t3 t4 t5 t6 … 

Gap t1 t2 t3     t5 t6 … 

Rollback-repeating t1 t2 t3 t2 t3 t4 …

Rollback-convergent t1 t2 t3 t’2 t’3 t4 …

Rollback-divergent t1 t2 t3 t’2 t’3 t’4 …

The output semantics depend on the operator type: 
• arbitrary: it depends on order, randomness, or external system 
• deterministic: it produces the same output when starting from the same initial state and 

given the same sequence of input tuples 
• convergent-capable: it can re-build internal state in a way that it eventually converges to 

a non-failure execution output 
• repeatable: it produces identical duplicate tuples
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Processing guarantees and result semantics
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Processing guarantees and result semantics
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Can you think of an operator that provides correct, possibly repeating, 
results even if it re-processes tuples after recovery?

Can you think of an operator that will converge to the correct result?

Can you think of an operator that will diverge?
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Fault-tolerance trade-offs
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Steady-state overhead
• How is performance affected by the fault-tolerance mechanism under normal, failure-

free operation? 
• How much memory or disk space is required to maintain input tuples and state? 
Recovery speed
• How long does it take for the computation to catch up after a failure and recovery? 
• How much input do we need to re-play? How expensive is it to re-construct the state? 

How fast can we de-duplicate output?
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Gap Recovery

• Restart the operator from an empty state 

• Drop events during recovery 

• The number of lost events depends on 
• failure detection delay 
• stream input rates 
• state size 

• No runtime overhead

13
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Passive Standby
• Each primary periodically 

checkpoints its state and 
sends it to the secondary 

• The state consists of 
• input queues 
• operator state 
• output queues 

• Short recovery time 
• High runtime overhead 
• The checkpoint interval 

determines the trade-off

14
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I1 O1
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send state
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primary

secondary

I1 O1

N’i update checkpoint

send state

Can you see any disadvantage in this approach?
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Upstream Backup

Upstream nodes act as backups for their downstream 
operators by logging tuples in their output queues until 
downstream operators have completely processed them.
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Upstream Backup

Upstream nodes act as backups for their downstream 
operators by logging tuples in their output queues until 
downstream operators have completely processed them.

15

periodically 
acknowledge 

reception of input 
tuples

notify upstream of 
oldest logged 

tuples necessary 
to re-build current 

state
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Upstream backup
Recovery time
• The recovery node may need to re-process many tuples 

• all tuples that contributed to lost state 
• a complete queue-trimming interval worth of tuples, if level-0 and level-1 acks are 

periodically transmitted 

Overhead
• Low bandwidth overhead 

• acks contain only tuple ids and are much smaller than checkpoint messages 

• Low processing overhead 
• operators need to remember the oldest tuple (on each of their input streams) that 

contributed to the current state

16
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Active Standby

17

• The secondary receives tuples from 
upstream and processes them in 
parallel with the primary but it 
doesn’t output results 

• Watermarks are used to identify 
duplicate output tuples and trim the 
secondary’s output queue 

• Negligible recovery time 
• High overhead since all processing 

is duplicated

Ni
primary

secondary

I1 O1

N’iI1
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Precise recovery

To provide precise recovery, we need duplicate elimination methods: 

• In passive and active standby, the failover node must ask downstream 
operators for the identifiers of the last tuples they received. 

• In upstream backup, operators need to track and log tuple provenance / 
result lineage. 

Can such techniques be efficiently implemented?  

What if more than one nodes fail at the same time?

18
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Exactly-once in Google Cloud Dataflow

Google Dataflow uses RPC for data communication 
• the sender will retry RPCs until it receives a positive ack 
• the system ensures retrying even if the sender crashes 
• this technique guarantees at-least-once delivery 

RPC retries might create duplicates 
• RPCs can sometimes succeed even if they appear to have failed, i.e. a sender can only trust a success status 
• Dataflow tags messages with unique IDs

19

http://streamingbook.net/fig/5-2

• Receivers store a catalog of all identifiers 
they have seen and processed. 

• The de-duplication catalog is stored in a 
scalable key/value store.

http://streamingbook.net/fig/5-2
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Exactly-once in Google Cloud Dataflow

Checkpointing to address non-determinism 
• Each output is checkpointed together with its unique ID to stable storage before being 

delivered to the next stage 
• Retries simply replay the output that has been checkpointed, i.e. the user’s non-

deterministic code is not re-executed 

Bloom filters for performance 
• Maintaining a catalog of all IDs ever seen and checking it for de-duplication is expensive 
• In a healthy pipeline though, most records will not be duplicates 
• Each worker maintains a Bloom Filter of all IDs it has seen: 

• if the filter returns false the record is not a duplicate 
• if it returns true, the worker sends a lookup to stable storage

20
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http://streamingbook.net/fig/5-5

Bloom filter: 
if true, the element is probably in the set 
if false, it definitely isn’t

http://streamingbook.net/fig/5-5
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Bloom filter: 
if true, the element is probably in the set 
if false, it definitely isn’t

Separate bloom filters for 
every 10-minute range to 

avoid saturation

r1 is delivered a second time 
and a catalog lookup is issued to 

verify it is a duplicate

r8 is a not a duplicate. 
Lookup is triggered by a 
Bloom filter false positive.

http://streamingbook.net/fig/5-5
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Further resources

• Jeong-Hyon Hwang et al. High-Availability Algorithms for 
Distributed Stream Processing. (ICDE ’05).


• http://cs.brown.edu/research/aurora/hwang.icde05.ha.pdf 


• Tyler Akidau et. al. MillWheel: Fault-Tolerant Stream Processing 
at Internet Scale (PVLDB’13)


• https://research.google/pubs/pub41378/
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