CS 591 K1:;

Data Stream Processing and Analytics
Spring 2020

3/17: High availability, recovery semantics, and guarantees

Vasiliki (Vasia) Kalavri
vkalavri@bu.edu

LY@ \asliki Kdavr | Boston University 2020

mailto:vkalavri@bu.edu

logay's topics

o High-availability and fault-tolerance in distributed stream processing
 Recovery semantics and guarantees

» Exactly-once processing in Apache Beam / Google Cloud Dataflow

2 Vasiiki Kalavr | Boston University 2020

State in dataflow computations

State
<k, v> <#Brexit, 520>

Any non-trivial streaming p) <#WorldCup, 480>

computation maintains state: & <#StarWars, 300>
» Logic - >

* rolling aggregations

 window contents

* |nput offsets - TN e

 machine learning models ALY Y -

3 Vasiiki Kalavr | Boston University 2020

State in dataflow computations

State
<k, v> <#Brexit, 520>

Any non-trivial streaming

/, <#WorldCup, 480>

computation maintains state: &) <#StarWars, 300>
<#Brexit>
» Logic - >

* rolling aggregations
 window contents
* |nput offsets -8 - \< e
 machine learning models oA/ -

3 Vasiiki Kalavr | Boston University 2020

State in dataflow computations

State
<k, v> <#Brexit, 521>

Any non-trivial streaming p) <#WorldCup, 480>

computation maintains state: & <#StarWars, 300>

> Logic — » <#Brexit, 521>
* rolling aggregations
 window contents
* |nput offsets - TN e
 machine learning models ALY Y -

3 Vasiiki Kalavr | Boston University 2020

€.

C & https://www.ververica.com/blog/blink-flink-alibaba-search AI i ba ba G rou p

Blink is a forked version of Flink that we have been maintaining to fit some of the unique

requirements we have at Alibaba. At this point, Blink is running on a few different clusters, and eldg
o[V =gl gToF-qe o Te IV MIO1010 MouTolelallal=k, SO large-scale performance is very important to us.
Distributed streaming systems will fail

 how can we guard state against faillures and guarantee correct results
after recovery?

 how can we ensure minimal downtime and fast recovery”

 how can we hide recovery side-effects from downstream applications?

4 Vasiiki Kalavr | Boston University 2020

What is a failure”

1. receive an event

MM

3. produce output

2. store In local buffer
and possibly update state

5 Vasiiki Kalavr | Boston University 2020

What is a failure”

1. receive an event

2. store In local buffer
and possibly update state

5 Vasiiki Kalavr | Boston University 2020

What is a failure”

1. receive an event
Was mi fully processed?

Was mo delivered downstream?

2. store In local buffer
and possibly update state

5 Vasiiki Kalavr | Boston University 2020

What is a failure”

1. receive an event
Was mi fully processed?

Was mo delivered downstream?

, 3. produce output

What can go wrong;:
2. store in local buffer

and possibly update state * lost events

» duplicate or lost state updates

* Wrong result

5 Vasiiki Kalavr | Boston University 2020

primary nodes

A simple system model

stream
SOources

iINnput queue

N

output queue
N2/ .. Nk

/o,

o*
.
o*
3

O
O

QO
()

other
apps

secondary nodes

‘e
‘e
0

Vasiiki Kalavr | Boston University 2020

Assumptions

primary N
I
I 0, * [he communication ngtvvork |
’ O T ensures order-preserving, reliable
2| O /0/2/' message transport, e.qg. TCP.
e Failures are single-node and fail-
0./ stop, I.e. no network partitions or
i 700 multiple simultaneous failures are
"""""""""""""""""""" N considered.
|’ |
\ ~ » The secondary node uses keep-
1 () ~ alive requests to detect primary
AN ~ failures.
secondary

7 Vasiiki Kalavr | Boston University 2020

Recovery types

Vasiiki Kalavr | Boston University 2020

Recovery types

* Precise recovery (exactly-once)
* |t hides the effects of a failure perfectly

e Post-tailure output is identical to no-tfailure

8 Vasiiki Kalavr | Boston University 2020

Recovery types

* Precise recovery (exactly-once)

* |t hides the effects of a failure perfectly

* Post-failure output is identical to no-failure
* Rollback recovery (at-least-once)

* |t avoids information loss

* [he output may contain duplicates

* A backup needs to rebuild state of the tailed node

8 Vasiiki Kalavr | Boston University 2020

Recovery types

* Precise recovery (exactly-once)

* |t hides the effects of a failure perfectly

* Post-failure output is identical to no-failure
* Rollback recovery (at-least-once)

* |t avoids information loss

* [he output may contain duplicates

* A backup needs to rebuild state of the tailed node
* Gap recovery (at-most-once)

* |t drops data during tailure

* [he backup starts from most recent information

8 Vasiiki Kalavr | Boston University 2020

Recovery semantics

Given a dataflow Q, let Oe be the output stream produced by input e. In the event of a
failure, let Orbe the pre-tailure execution of the primary and O’ the output produced by the

secondary after recovery.

* Precise recovery guarantees O+ O’ = Oe
* Rollback recovery allows duplicate tuples downstream:
* repeating: duplicate tuples are identical to those produced by the primary

» convergent: duplicate tuples are difterent but eliminating them leads to output identical
to an output without failure

» divergent: duplicate tuples are different and eliminating them produces different output

9 Vasiiki Kalavr | Boston University 2020

Outputs after recovery

Recovery type Before failure After failure
Precise f11o13 41516 ...

Gap t1 1o t3 ts t6 ...
Rollback-repeating 11213 tatsts ..
Rollback-convergent f1 1o t3 tot'sts
Rollback-divergent f1tots tat’'st’s .

The output semantics depend on the operator type:
» arbitrary: it depends on order, randomness, or external system

* deterministic: it produces the same output when starting from the same initial state and
given the same sequence of input tuples

* convergent-capable: it can re-build internal state in a way that it eventually converges to
a non-failure execution output

* repeatable: it produces identical duplicate tuples

10 Vasiiki Kalavr | Boston University 2020

Processing guarantees and result semantics

.4

3

2

1

* SuUMm

11

Vasiiki Kalavr | Boston University 2020

Processing guarantees and result semantics

.19

A

3

2

" SUM

1

11

Vasiiki Kalavr | Boston University 2020

Processing guarantees and result semantics

. |0

o

A

3

“ SuUm

3

1

11

Vasiiki Kalavr | Boston University 2020

Processing guarantees and result semantics

|7

0

5

A

" SUM

6

3

1

11

Vasiiki Kalavr | Boston University 2020

Processing guarantees and result semantics

. |8

7

o

5

“ Sum

10

0

3

1

10

11

Vasiiki Kalavr | Boston University 2020

Processing guarantees and result semantics

. |8

7

o

5

“ Sum

10

0

3

1

10

11

.4

3

2

1

0

Vasiiki Kalavr | Boston University 2020

Processing guarantees and result semantics

. |8

7

o

5

“ Sum

10

0

3

1

10

11

[0

A

3

2

G

1

1

Vasiiki Kalavr | Boston University 2020

Processing guarantees and result semantics

. |8

7

o

5

“ Sum

10

0

3

1

10

11

. |6

5

A

3

. SUMm

3

1

Vasiiki Kalavr | Boston University 2020

Processing guarantees and result semantics

. |8

7

o

5

“ Sum

10

0

3

1

10

11

|7

o

o

A

. SUM

o

3

1

Vasiiki Kalavr | Boston University 2020

Processing guarantees and result semantics

“ Sum

10

10

11

Vasiiki Kalavr | Boston University 2020

Processing guarantees and result semantics

. 187 |6] |5 10116/ |3] |1 .. |6]19] |4] |3 9116/ 3|1

. SUM > . SUM

10 9

11 Vasiiki Kalavr | Boston University 2020

Processing guarantees and result semantics

3| |7||0] D 10116/ |3] |1 .. |6]19] |4] |3 9116/ 3|1

“ Sum > . SUMm

10 9

Can you think of an operator that provides correct, possibly repeating,
results even if it re-processes tuples after recovery?

5

11 Vasiiki Kalavr | Boston University 2020

i
o

Processing guarantees and result semantics

3

o

5

" SUM

10

0

3

10

o

5

A

3

. SUMm

9

0

3|1

Can you think of an operator that provides correct, possibly repeating,
results even if it re-processes tuples after recovery?

Can you think of an operator that will converge to the correct result?

11

Vasiiki Kalavr | Boston University 2020

B
o
B

Processing guarantees and result semantics

3

o

5

" SUM

10

0

3

10

o

5

A

3

" Sum

9

0

3|1

Can you think of an operator that provides correct, possibly repeating,
results even if it re-processes tuples after recovery?

Can you think of an operator that will converge to the correct result?

Can you think of an operator that will diverge?

11

Vasiiki Kalavr | Boston University 2020

Fault-tolerance trade-offs

Steady-state overhead

 How Is performance affected by the fault-tolerance mechanism under normal, failure-
free operation?

 How much memory or disk space is required to maintain input tuples and state”
Recovery speed
 How long does it take for the computation to catch up after a failure and recovery?

 How much input do we need to re-play”? How expensive is it to re-construct the state”?
ow fast can we de-duplicate output?

12 Vasiiki Kalavr | Boston University 2020

Gap Recovery

Restart the operator from an empty state
Drop events during recovery

The number of lost events depends on
e failure detection delay
e stream input rates

e state size

No runtime overhead

13 Vasiiki Kalavr | Boston University 2020

Passive Standby

Each primary periodically
checkpoints its state and
sends It to the secondary

The state consists of
e |Nnput queues
* Qperator state

* Qutput queues

Short recovery time
High runtime overhead

The checkpoint interva
determines the trade-oft

primary

Ni
1 C oF
send state
secondary :
' N, update checkpoint :
14

Vasiiki Kalavr | Boston University 2020

Passive Standby

Each prirpary .periodicaHy primary N
checkpoints its state and -
sends it to the secondary | Q I

The state consists of

e |Nnput queues

send state

* Qperator state

e oOutput queues ésecondarv
Short recovery time 5
High runtime overhead (O ’

The checkpoint interval
determines the trade-oft

14 Vasiiki Kalavr | Boston University 2020

Upstream Backup

Produce tuples
and store in
output queues

Map output
tuples to

iInput tuples

Trim
output
queues

N

Process tuples,
produce new
tuples and

store in output
queues

Map output
tuples onto
input tuples

luple

App

Le
“Tuple® |
cecelV ed

vel-0 ACK

Consume
tuples

Upstream nodes act as backups for their downstream

operators by logging tuples in their output que

Jes untll

downstream operators have completely processed them.

15

Vasiiki Kalavr | Boston University 2020

Upstream Backup

Produce tuples
and store in

output queues

Map output
tuples to

iInput tuples

Trim
output
queues

Upstream nodes act as backups for their dowr
operators by logging tuples in their output que

vel-1 ACK

Le

N

“Eﬁe cl of \.Up\e”s
. aved at APP

Process tuples,
produce new

tuplf-zs and tuple s
store In output
queues
Map output 0 ACK
tuples onto Le«\’-(e:;p\es
input tuples rece'Ne 4"

App

Consume
tuples

periodically
acknowledge
reception of input
tuples

<

Stream
Jes until

downstream operators have completely processed them.

15

Vasiiki Kalavr | Boston University 2020

Upstream Backup

N N App

Produce tuples
and store in tup Jeg Process tuples,
output queues —> produce new
tuples and tHQIes
Map output Level-0 ACK | store in output
tuples to “Tuples queues C?:Sllérsne
input tuples receNed P
Map output Level-0 ACK periodically
.t uples or|1to «Tup\es < acknowledge
input tuples re(;e'\\led reception of input
tuples
I |

Upstream nodes act as backups for their downstream
operators by logging tuples in their output queues until
downstream operators have completely processed them.

15 Vasiiki Kalavr | Boston University 2020

Upstream backup

Recovery time
 [he recovery node may need to re-process many tuples

» all tuples that contributed to lost state

 a complete queue-trimming interval worth of tuples, If level-O and level-1 acks are
periodically transmitted

Overhead
e | ow bandwidth overhead

* acks contain only tuple ids and are much smaller than checkpoint messages

* |Low processing overhead

e operators need to remember the oldest tuple (on each of their input streams) that
contributed to the current state

16 Vasiiki Kalavr | Boston University 2020

Active Standby

The secondary receives tuples from N primary
upstream and processes them in
parallel with the primary but it
doesn't output results

O

—>

Watermarks are used to identify
duplicate output tuples and trim the
secondary's output queue

secondary

Negligible recovery time

High overhead since all processing
Is duplicated

17 Vasiiki Kalavr | Boston University 2020

Precise recovery

To provide precise recovery, we need duplicate elimination methods:

* |n passive and active standby, the failover node must ask downstream
operators for the identitiers of the last tuples they received.

* |n upstream backup, operators need to track and log tuple provenance /
result lineage.

Can such techniques be efficiently implemented?

What if more than one nodes fail at the same time?

18 Vasiiki Kalavr | Boston University 2020

Exactly-once in Google Cloud Dataflow

Google Dataflow uses RPC for data communication
« the sender will retry RPCs until it receives a positive ack

* the system ensures retrying even if the sender crashes

e this technique guarantees at-least-once delivery

RPC retries might create duplicates

« RPCs can sometimes succeed even if they appear to have failed, i.e. a sender can only trust a success status

o Dataflow tags messages with unique IDs

scalable key/value store. k2. m2, id100

| | N 4k0, mo, id100|
* Receivers store a catalog of all identifiers J/
they have seen and processed. !
y P [Shuffle »=-% ki, m1,id11
. . . . \
 [he de-duplication catalog is stored in a “
\1—|

kO | id0, id1, id2, ... I
k1 | id10,id11,id12, ...

k2 ‘ 1d20, id21, id22, ... I

http://streamingbook.net/fig/5-2

19

Duplicate

Vasiiki Kalavr | Boston University 2020

http://streamingbook.net/fig/5-2

Exactly-once in Google Cloud Dataflow

Checkpointing to address non-determinism

 Each output is checkpointed together with its unigue ID to stable storage before being
delivered to the next stage

* Retries simply replay the output that has been checkpointed, i.e. the user’'s non-
deterministic code Is not re-executed

Bloom filters for performance
* Maintaining a catalog of all IDs ever seen and checking it for de-duplication is expensive

* |n a healthy pipeline though, most records will not be duplicates

e Each worker maintains a Bloom Filter of all IDs it has seen:
* |f the filter returns false the record is not a duplicate

* if it returns true, the worker sends a lookup to stable storage

20 Vasiiki Kalavr | Boston University 2020

Bloom filter:
rr r4rs 516 61719 if true, the element is probably in the set
r3 1 r4 r8r10 . . . C

if false, it definitely isn't

» System arrival time

| | | |
12:00 12:10 12:10 12210 now

r6

1 r4 8

(atalog

http://streamingbook.net/fig/5-5

21 Vasiiki Kalavr | Boston University 2020

http://streamingbook.net/fig/5-5

Bloom filter:
rr r4rs 516 61719 if true, the element is probably in the set
r3 1 r4 r8r10 . . . C

if false, it definitely isn't

| r 1
g “// v / E < Separate bloom filters for
| | | |

| > System arrival time every 10-minute range to
12:00 1210 1 1210 1 12:10 " now avolid saturation

r6
r8

v

r r4

(atalog

http://streamingbook.net/fig/5-5

21 Vasiiki Kalavr | Boston University 2020

http://streamingbook.net/fig/5-5

Bloom filter:
if true, the element is probably in the set
it false, it definitely isn't

, , r I
LTLTLT L7 -
Separate bloom filters for
AVYAV < 9P
I I I I

> System arival time every 10-minute range to
12:00 1210 1 1210 1 12:10 " now avolid saturation

! ;

v

(atalog

http://streamingbook.net/fig/5-5

21 Vasiiki Kalavr | Boston University 2020

http://streamingbook.net/fig/5-5

Bloom filter:
if true, the element is probably in the set
it false, it definitely isn't

E E E E < Separate bloom filters for
I I I I

> System arival time every 10-minute range to
12:00 1210 1 1210 1 12:10 " now avolid saturation

r r4 16
ap

(atalog

http://streamingbook.net/fig/5-5

21 Vasiiki Kalavr | Boston University 2020

http://streamingbook.net/fig/5-5

Furtner resources

 Jeong-Hyon Hwang et al. High-Availability Algorithms for
Distributed Stream Processing. (ICDE ’05).

o http://cs.brown.edu/research/aurora/hwang.icde05.ha.pdf

* Tyler Akidau et. al. MillWheel: Fault-Tolerant Stream Processing
at Internet Scale (PVLDB’13)

e https://research.google/pubs/pub41378/

22 Vasiiki Kalavr | Boston University 2020

http://cs.brown.edu/research/aurora/hwang.icde05.ha.pdf
https://research.google/pubs/pub41378/

