
🤧😷🤒 Vasiliki Kalavri | Boston University 2020

CS 591 K1:
Data Stream Processing and Analytics

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

Spring 2020

3/17: High availability, recovery semantics, and guarantees

mailto:vkalavri@bu.edu

Vasiliki Kalavri | Boston University 2020

Today’s topics

• High-availability and fault-tolerance in distributed stream processing

• Recovery semantics and guarantees

• Exactly-once processing in Apache Beam / Google Cloud Dataflow

2

Vasiliki Kalavri | Boston University 2020

Logic

State
<k, v> <#Brexit, 520>

<#WorldCup, 480>

<#StarWars, 300>

Any non-trivial streaming
computation maintains state:

• rolling aggregations

• window contents

• input offsets

• machine learning models

State in dataflow computations

3

Vasiliki Kalavri | Boston University 2020

Logic

State
<k, v> <#Brexit, 520>

<#WorldCup, 480>

<#StarWars, 300>

<#Brexit>

Any non-trivial streaming
computation maintains state:

• rolling aggregations

• window contents

• input offsets

• machine learning models

State in dataflow computations

3

Vasiliki Kalavri | Boston University 2020

Logic

State
<k, v> <#Brexit, 521>

<#WorldCup, 480>

<#StarWars, 300>

<#Brexit, 521>

Any non-trivial streaming
computation maintains state:

• rolling aggregations

• window contents

• input offsets

• machine learning models

State in dataflow computations

3

Vasiliki Kalavri | Boston University 20204

Distributed streaming systems will fail

• how can we guard state against failures and guarantee correct results
after recovery?

• how can we ensure minimal downtime and fast recovery?

• how can we hide recovery side-effects from downstream applications?

Vasiliki Kalavri | Boston University 2020

What is a failure?

op

1. receive an event

2. store in local buffer
and possibly update state

3. produce output

5

mi mo

Vasiliki Kalavri | Boston University 2020

What is a failure?

op

1. receive an event

2. store in local buffer
and possibly update state

3. produce output

5

mi mo

Vasiliki Kalavri | Boston University 2020

What is a failure?

op

1. receive an event

2. store in local buffer
and possibly update state

3. produce output

5

mi mo
Was mi fully processed?

Was mo delivered downstream?

Vasiliki Kalavri | Boston University 2020

What is a failure?

op

1. receive an event

2. store in local buffer
and possibly update state

3. produce output

What can go wrong:
• lost events
• duplicate or lost state updates
• wrong result

5

mi mo
Was mi fully processed?

Was mo delivered downstream?

Vasiliki Kalavri | Boston University 2020

A simple system model

stream
sources

N1 NKN2 …input queue output queue
primary nodes

secondary nodes

other
apps

I1

I2

O1

O2

N’1 N’KN’2 …I’1

I’2

O’1 O’2

6

Vasiliki Kalavri | Boston University 2020

Assumptions

Ni
primary

secondary

I1

I2

O1

O2

N’iI’1

I’2

O’1 O’2

• The communication network
ensures order-preserving, reliable
message transport, e.g. TCP.

• Failures are single-node and fail-
stop, i.e. no network partitions or
multiple simultaneous failures are
considered.

• The secondary node uses keep-
alive requests to detect primary
failures.

7

Vasiliki Kalavri | Boston University 2020

Recovery types

8

Vasiliki Kalavri | Boston University 2020

Recovery types
• Precise recovery (exactly-once)

• It hides the effects of a failure perfectly
• Post-failure output is identical to no-failure

8

Vasiliki Kalavri | Boston University 2020

Recovery types
• Precise recovery (exactly-once)

• It hides the effects of a failure perfectly
• Post-failure output is identical to no-failure

• Rollback recovery (at-least-once)
• It avoids information loss
• The output may contain duplicates
• A backup needs to rebuild state of the failed node

8

Vasiliki Kalavri | Boston University 2020

Recovery types
• Precise recovery (exactly-once)

• It hides the effects of a failure perfectly
• Post-failure output is identical to no-failure

• Rollback recovery (at-least-once)
• It avoids information loss
• The output may contain duplicates
• A backup needs to rebuild state of the failed node

• Gap recovery (at-most-once)
• It drops data during failure
• The backup starts from most recent information

8

Vasiliki Kalavri | Boston University 2020

Recovery semantics

Given a dataflow Q, let Oe be the output stream produced by input e. In the event of a
failure, let Of be the pre-failure execution of the primary and O’ the output produced by the
secondary after recovery.

• Precise recovery guarantees Of + O’ = Oe
• Rollback recovery allows duplicate tuples downstream:

• repeating: duplicate tuples are identical to those produced by the primary
• convergent: duplicate tuples are different but eliminating them leads to output identical

to an output without failure
• divergent: duplicate tuples are different and eliminating them produces different output

9

Vasiliki Kalavri | Boston University 2020

Outputs after recovery

10

Recovery type Before failure After failure

Precise t1 t2 t3 t4 t5 t6 …

Gap t1 t2 t3 t5 t6 …

Rollback-repeating t1 t2 t3 t2 t3 t4 …

Rollback-convergent t1 t2 t3 t’2 t’3 t4 …

Rollback-divergent t1 t2 t3 t’2 t’3 t’4 …

The output semantics depend on the operator type:
• arbitrary: it depends on order, randomness, or external system
• deterministic: it produces the same output when starting from the same initial state and

given the same sequence of input tuples
• convergent-capable: it can re-build internal state in a way that it eventually converges to

a non-failure execution output
• repeatable: it produces identical duplicate tuples

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
4 3 2 1

0

…

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
4 3 2 1…

1

5

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
4 3 1

3

3… 56

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
5 4 3

6

6… 67 1

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
6 5 3

10

6… 78 110

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
4 3 2 1

0

…
sum

6 5 3

10

6… 78 110

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
4 3 2 1…

1

5
sum

6 5 3

10

6… 78 110

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
4 3 1

3

3… 56
sum

6 5 3

10

6… 78 110

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
5 4 3

6

6… 67 1
sum

6 5 3

10

6… 78 110

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
5 4 3

6

6… 67 1
sum

6 5 3

10

6… 78 110

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
4 3 3

9

6… 56 19
sum

6 5 3

10

6… 78 110

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
4 3 3

9

6… 56 19
sum

6 5 3

10

6… 78 110

Can you think of an operator that provides correct, possibly repeating,
results even if it re-processes tuples after recovery?

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
4 3 3

9

6… 56 19
sum

6 5 3

10

6… 78 110

Can you think of an operator that provides correct, possibly repeating,
results even if it re-processes tuples after recovery?

Can you think of an operator that will converge to the correct result?

Vasiliki Kalavri | Boston University 2020

Processing guarantees and result semantics

11

sum
4 3 3

9

6… 56 19
sum

6 5 3

10

6… 78 110

Can you think of an operator that provides correct, possibly repeating,
results even if it re-processes tuples after recovery?

Can you think of an operator that will converge to the correct result?

Can you think of an operator that will diverge?

Vasiliki Kalavri | Boston University 2020

Fault-tolerance trade-offs

12

Steady-state overhead
• How is performance affected by the fault-tolerance mechanism under normal, failure-

free operation?
• How much memory or disk space is required to maintain input tuples and state?
Recovery speed
• How long does it take for the computation to catch up after a failure and recovery?
• How much input do we need to re-play? How expensive is it to re-construct the state?

How fast can we de-duplicate output?

Vasiliki Kalavri | Boston University 2020

Gap Recovery

• Restart the operator from an empty state

• Drop events during recovery

• The number of lost events depends on
• failure detection delay
• stream input rates
• state size

• No runtime overhead

13

Vasiliki Kalavri | Boston University 2020

Passive Standby
• Each primary periodically

checkpoints its state and
sends it to the secondary

• The state consists of
• input queues
• operator state
• output queues

• Short recovery time
• High runtime overhead
• The checkpoint interval

determines the trade-off

14

Ni
primary

secondary

I1 O1

N’i update checkpoint

send state

Vasiliki Kalavri | Boston University 2020

Passive Standby
• Each primary periodically

checkpoints its state and
sends it to the secondary

• The state consists of
• input queues
• operator state
• output queues

• Short recovery time
• High runtime overhead
• The checkpoint interval

determines the trade-off

14

Ni
primary

secondary

I1 O1

N’i update checkpoint

send state

Can you see any disadvantage in this approach?

Vasiliki Kalavri | Boston University 2020

Upstream Backup

Upstream nodes act as backups for their downstream
operators by logging tuples in their output queues until
downstream operators have completely processed them.

15

Vasiliki Kalavri | Boston University 2020

Upstream Backup

Upstream nodes act as backups for their downstream
operators by logging tuples in their output queues until
downstream operators have completely processed them.

15

periodically
acknowledge

reception of input
tuples

Vasiliki Kalavri | Boston University 2020

Upstream Backup

Upstream nodes act as backups for their downstream
operators by logging tuples in their output queues until
downstream operators have completely processed them.

15

periodically
acknowledge

reception of input
tuples

notify upstream of
oldest logged

tuples necessary
to re-build current

state

Vasiliki Kalavri | Boston University 2020

Upstream backup
Recovery time
• The recovery node may need to re-process many tuples

• all tuples that contributed to lost state
• a complete queue-trimming interval worth of tuples, if level-0 and level-1 acks are

periodically transmitted

Overhead
• Low bandwidth overhead

• acks contain only tuple ids and are much smaller than checkpoint messages

• Low processing overhead
• operators need to remember the oldest tuple (on each of their input streams) that

contributed to the current state

16

Vasiliki Kalavri | Boston University 2020

Active Standby

17

• The secondary receives tuples from
upstream and processes them in
parallel with the primary but it
doesn’t output results

• Watermarks are used to identify
duplicate output tuples and trim the
secondary’s output queue

• Negligible recovery time
• High overhead since all processing

is duplicated

Ni
primary

secondary

I1 O1

N’iI1

Vasiliki Kalavri | Boston University 2020

Precise recovery

To provide precise recovery, we need duplicate elimination methods:

• In passive and active standby, the failover node must ask downstream
operators for the identifiers of the last tuples they received.

• In upstream backup, operators need to track and log tuple provenance /
result lineage.

Can such techniques be efficiently implemented?

What if more than one nodes fail at the same time?

18

Vasiliki Kalavri | Boston University 2020

Exactly-once in Google Cloud Dataflow

Google Dataflow uses RPC for data communication
• the sender will retry RPCs until it receives a positive ack
• the system ensures retrying even if the sender crashes
• this technique guarantees at-least-once delivery

RPC retries might create duplicates
• RPCs can sometimes succeed even if they appear to have failed, i.e. a sender can only trust a success status
• Dataflow tags messages with unique IDs

19

http://streamingbook.net/fig/5-2

• Receivers store a catalog of all identifiers
they have seen and processed.

• The de-duplication catalog is stored in a
scalable key/value store.

http://streamingbook.net/fig/5-2

Vasiliki Kalavri | Boston University 2020

Exactly-once in Google Cloud Dataflow

Checkpointing to address non-determinism
• Each output is checkpointed together with its unique ID to stable storage before being

delivered to the next stage
• Retries simply replay the output that has been checkpointed, i.e. the user’s non-

deterministic code is not re-executed

Bloom filters for performance
• Maintaining a catalog of all IDs ever seen and checking it for de-duplication is expensive
• In a healthy pipeline though, most records will not be duplicates
• Each worker maintains a Bloom Filter of all IDs it has seen:

• if the filter returns false the record is not a duplicate
• if it returns true, the worker sends a lookup to stable storage

20

Vasiliki Kalavri | Boston University 202021

http://streamingbook.net/fig/5-5

Bloom filter:
if true, the element is probably in the set
if false, it definitely isn’t

http://streamingbook.net/fig/5-5

Vasiliki Kalavri | Boston University 202021

http://streamingbook.net/fig/5-5

Bloom filter:
if true, the element is probably in the set
if false, it definitely isn’t

Separate bloom filters for
every 10-minute range to

avoid saturation

http://streamingbook.net/fig/5-5

Vasiliki Kalavri | Boston University 202021

http://streamingbook.net/fig/5-5

Bloom filter:
if true, the element is probably in the set
if false, it definitely isn’t

Separate bloom filters for
every 10-minute range to

avoid saturation

r1 is delivered a second time
and a catalog lookup is issued to

verify it is a duplicate

http://streamingbook.net/fig/5-5

Vasiliki Kalavri | Boston University 202021

http://streamingbook.net/fig/5-5

Bloom filter:
if true, the element is probably in the set
if false, it definitely isn’t

Separate bloom filters for
every 10-minute range to

avoid saturation

r1 is delivered a second time
and a catalog lookup is issued to

verify it is a duplicate

r8 is a not a duplicate.
Lookup is triggered by a
Bloom filter false positive.

http://streamingbook.net/fig/5-5

Vasiliki Kalavri | Boston University 2020

Further resources

• Jeong-Hyon Hwang et al. High-Availability Algorithms for
Distributed Stream Processing. (ICDE ’05).

• http://cs.brown.edu/research/aurora/hwang.icde05.ha.pdf

• Tyler Akidau et. al. MillWheel: Fault-Tolerant Stream Processing
at Internet Scale (PVLDB’13)

• https://research.google/pubs/pub41378/

22

http://cs.brown.edu/research/aurora/hwang.icde05.ha.pdf
https://research.google/pubs/pub41378/

