CS 591 K1: **Data Stream Processing and Analytics** Spring 2020

3/17: High availability, recovery semantics, and guarantees

Vasiliki (Vasia) Kalavri vkalavri@bu.edu

Today's topics

- High-availability and fault-tolerance in distributed stream processing
- Recovery semantics and guarantees
- Exactly-once processing in Apache Beam / Google Cloud Dataflow

State in dataflow computations

Any non-trivial streaming computation maintains state:

- rolling aggregations
- window contents
- input offsets
- machine learning models

State in dataflow computations

Any non-trivial streaming computation maintains state:

- rolling aggregations
- window contents
- input offsets
- machine learning models

State in dataflow computations

Any non-trivial streaming computation maintains state:

- rolling aggregations
- window contents
- input offsets
- machine learning models

Blink is a forked version of Flink that we have been maintaining to fit some of the unique requirements we have at Alibaba. At this point, Blink is running on a few different clusters, and each cluster has about 1000 machines, so large-scale performance is very important to us.

Distributed streaming systems *will* fail

- after recovery?
- how can we ensure minimal downtime and fast recovery?

how can we guard state against failures and guarantee correct results

how can we hide recovery side-effects from downstream applications?

2. store in local buffer and possibly update state

What is a failure?

Vasiliki Kalavri | Boston University 2020

2. store in local buffer and possibly update state

What is a failure?

Vasiliki Kalavri | Boston University 2020

2. store in local buffer and possibly update state

What is a failure?

Was m_i fully processed?

Was mo delivered downstream?

2. store in local buffer and possibly update state

What is a failure?

Was m_i fully processed?

Was mo delivered downstream?

What can go wrong:

- lost events
- duplicate or lost state updates
- wrong result

A simple system model

primary nodes

Assumptions

- The communication network ensures order-preserving, reliable message transport, e.g. TCP.
- Failures are single-node and failstop, i.e. no network partitions or multiple simultaneous failures are considered.
- The secondary node uses keepalive requests to detect primary failures.

- Precise recovery (exactly-once)
 - It hides the effects of a failure perfectly
 - Post-failure output is identical to no-failure

- **Precise** recovery (**exactly-once**)
 - It hides the effects of a failure perfectly
 - Post-failure output is identical to no-failure
- Rollback recovery (at-least-once)
 - It avoids information loss
 - The output may contain duplicates
 - A backup needs to rebuild state of the failed node

- **Precise** recovery (**exactly-once**)
 - It hides the effects of a failure perfectly
 - Post-failure output is identical to no-failure
- Rollback recovery (at-least-once)
 - It avoids information loss
 - The output may contain duplicates
 - A backup needs to rebuild state of the failed node
- Gap recovery (at-most-once)
 - It drops data during failure
 - The backup starts from most recent information

Recovery semantics

Given a dataflow Q, let O_e be the output stream produced by input e. In the event of a failure, let O_f be the pre-failure execution of the primary and O' the output produced by the secondary after recovery.

- **Precise** recovery guarantees $O_f + O' = O_e$
- **Rollback** recovery allows duplicate tuples downstream:
 - **repeating:** duplicate tuples are identical to those produced by the primary
 - **convergent**: duplicate tuples are different but eliminating them leads to output identical to an output without failure
 - **divergent:** duplicate tuples are different and eliminating them produces different output

Outputs after recovery

Recovery type	
Precise	
Gap	
Rollback-repeating	
Rollback-convergent	
Rollback-divergent	

The output semantics depend on the operator type:

- **arbitrary**: it depends on order, randomness, or external system
- **deterministic**: it produces the same output when starting from the same initial state and given the same sequence of input tuples
- **convergent-capable**: it can re-build internal state in a way that it eventually converges to a non-failure execution output
- **repeatable**: it produces identical duplicate tuples

Before failure	After failure
t ₁ t ₂ t ₃	t4 t5 t6
t ₁ t ₂ t ₃	t ₅ t ₆
t ₁ t ₂ t ₃	t₂ t₃ t ₄
t ₁ t ₂ t ₃	ť²2 ť³3 ť4
t ₁ t ₂ t ₃	ť2 ť3 ť4

Can you think of an operator that provides correct, possibly repeating,

- Can you think of an operator that provides correct, possibly repeating, results even if it re-processes tuples after recovery?
- Can you think of an operator that will converge to the correct result?

- Can you think of an operator that provides correct, possibly repeating, results even if it re-processes tuples after recovery?
- Can you think of an operator that will converge to the correct result?

Fault-tolerance trade-offs

Steady-state overhead

- free operation?

Recovery speed

- How fast can we de-duplicate output?

• How is performance affected by the fault-tolerance mechanism under normal, failure-

How much memory or disk space is required to maintain input tuples and state?

 How long does it take for the computation to catch up after a failure and recovery? • How much input do we need to re-play? How expensive is it to re-construct the state?

Gap Recovery

- Restart the operator from an empty state
- Drop events during recovery
- The number of lost events depends on
 - failure detection delay
 - stream input rates
 - state size \bullet
- No runtime overhead

Passive Standby

- Each primary periodically checkpoints its state and sends it to the secondary
- The state consists of
 - input queues lacksquare
 - operator state ullet
 - output queues \bullet
- Short recovery time
- High runtime overhead
- The checkpoint interval determines the trade-off

Passive Standby

- Each primary periodically checkpoints its state and sends it to the secondary
- The state consists of
 - input queues lacksquare
 - operator state
 - output queues ullet
- Short recovery time
- High runtime overhead
- The checkpoint interval determines the trade-off

Can you see any disadvantage in this approach?

Upstream Backup

Upstream nodes act as backups for their downstream operators by logging tuples in their output queues until downstream operators have completely processed them.

Upstream Backup

Upstream nodes act as backups for their downstream operators by logging tuples in their output queues until downstream operators have completely processed them.

Upstream Backup

Upstream nodes act as backups for their downstream operators by logging tuples in their output queues until downstream operators have completely processed them.

Upstream backup

Recovery time

- The recovery node may need to re-process many tuples
 - all tuples that contributed to lost state
 - a complete queue-trimming interval worth of tuples, if level-0 and level-1 acks are periodically transmitted

Overhead

- Low bandwidth overhead
 - acks contain only tuple ids and are much smaller than checkpoint messages
- Low processing overhead
 - operators need to remember the oldest tuple (on each of their input streams) that contributed to the current state

- The secondary receives tuples from upstream and processes them in parallel with the primary but it doesn't output results
- Watermarks are used to identify duplicate output tuples and trim the secondary's output queue
- Negligible recovery time
- High overhead since all processing is duplicated

Active Standby

Precise recovery

- In passive and active standby, the failover node must ask downstream operators for the identifiers of the last tuples they received.
- In upstream backup, operators need to track and log tuple provenance / result lineage.

To provide precise recovery, we need duplicate elimination methods:

- Can such techniques be efficiently implemented?
- What if more than one nodes fail at the same time?

Exactly-once in Google Cloud Dataflow

Google Dataflow uses RPC for data communication

- the sender will retry RPCs until it receives a positive ack ullet
- the system ensures retrying even if the sender crashes
- this technique guarantees *at-least-once* delivery \bullet

RPC retries might create duplicates

- \bullet
- Dataflow tags messages with unique IDs
- Receivers store a catalog of all identifiers they have seen and processed.
- The de-duplication catalog is stored in a scalable key/value store.

RPCs can sometimes succeed even if they appear to have failed, i.e. a sender can only trust a success status

http://streamingbook.net/fig/5-2

Exactly-once in Google Cloud Dataflow

Checkpointing to address non-determinism

- Each output is checkpointed together with its unique ID to stable storage before being delivered to the next stage
- Retries simply replay the output that has been checkpointed, i.e. the user's nondeterministic code is not re-executed

Bloom filters for performance

- Maintaining a catalog of all IDs ever seen and checking it for de-duplication is expensive
- In a *healthy* pipeline though, most records will not be duplicates
- Each worker maintains a Bloom Filter of all IDs it has seen:
 - if the filter returns false the record is not a duplicate
 - if it returns true, the worker sends a lookup to stable storage

http://streamingbook.net/fig/5-5

Bloom filter:

if true, the element is probably in the set if false, it *definitely* isn't

http://streamingbook.net/fig/5-5

Bloom filter:

if true, the element is probably in the set if false, it *definitely* isn't

> Separate bloom filters for every 10-minute range to avoid saturation

r1 is delivered a second time and a catalog lookup is issued to verify it is a duplicate

http://streamingbook.net/fig/5-5

Bloom filter:

if true, the element is *probably* in the set if false, it *definitely* isn't

> Separate bloom filters for every 10-minute range to avoid saturation

r1 is delivered a second time and a catalog lookup is issued to verify it is a duplicate

http://streamingbook.net/fig/5-5

Bloom filter:

➡ System arrival time

if true, the element is *probably* in the set if false, it *definitely* isn't

> Separate bloom filters for every 10-minute range to avoid saturation

r8 is a not a duplicate. Lookup is triggered by a Bloom filter false positive.

- Jeong-Hyon Hwang et al. High-Availability Algorithms for **Distributed Stream Processing**. (ICDE '05).
- at Internet Scale (PVLDB'13)
 - https://research.google/pubs/pub41378/

Further resources

• <u>http://cs.brown.edu/research/aurora/hwang.icde05.ha.pdf</u>

• Tyler Akidau et. al. MillWheel: Fault-Tolerant Stream Processing

