
🤧😷🤒 Vasiliki Kalavri | Boston University 2021

CS 591 K1:
Data Stream Processing and Analytics

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

Spring 2021

Flow control and load shedding

mailto:vkalavri@bu.edu
mailto:vkalavri@bu.edu

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers
can process events.

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers
can process events.

• What happens if consumers cannot keep up with the event rate?

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers
can process events.

• What happens if consumers cannot keep up with the event rate?
• drop messages

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers
can process events.

• What happens if consumers cannot keep up with the event rate?
• drop messages
• buffer messages in a queue: what if the queue grows larger than available memory?

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers
can process events.

• What happens if consumers cannot keep up with the event rate?
• drop messages
• buffer messages in a queue: what if the queue grows larger than available memory?
• block the producer (back-pressure, flow control)

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Load management approaches

3

!Load
shedder

(a) Load shedding (b) Back-pressure (c) Elasticity

Selectively drop records:

• Temporarily trades-off result
accuracy for sustainable
performance.

• Suitable for applications with strict
latency constraints that can tolerate
approximate results.

Slow down the flow of data:

• The system buffers excess data for
later processing, once input rates
stabilize.

• Requires a persistent input source.
• Suitable for transient load increase.

Scale resource allocation:

• Addresses the case of increased
load and additionally ensures no
resources are left idle when the
input load decreases.

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Load shedding

• Load shedding is the process of discarding data when input rates
increase beyond system capacity.

• Load shedding techniques operate in a dynamic fashion: the system
detects an overload situation during runtime and selectively drops tuples
according to a QoS specification.

• Similar to congestion control or video streaming in a lower quality.

4

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png

5

https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png
https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Load shedding as an optimization problem

N: query network
I: set of input streams with known arrival rates
C: system processing capacity
H: headroom factor, i.e. a conservative estimate of the percentage of resources required by the system at steady state
Load(N(I)): the load as a fraction of the total capacity C that network N(I) presents
Uacc: the aggregate utility

6

Find a new network N' such that

Load(N’(I))< H x C and

Uacc(N(I)) - Uacc(N'I)) is minimized

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Implementation

• Load shedding is commonly implemented by a standalone component
integrated with the stream processor

• The load shedder continuously monitors input rates or other system
metrics and can access information about the running query plan

• It detects overload and decides what actions to take in order to maintain acceptable
latency and minimize result quality degradation.

7

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

DSMS with load shedder

8

Synopsis Maintenance
Synopsis

for S1

Synopsis
for Sr

…

Fast
approximate

answers

…

S1

S2

Sr

In
pu

t M
an

ag
er Scheduler

QoS Monitor

Load Shedder

Query
Execution

Engine

QmQ2Q1

Ad-hoc or
continuous queries

Input streams

…

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Load shedding decisions
• When to shed load?

• detect overload quickly to avoid latency increase
• monitor input rates

• Where in the query plan?
• dropping at the sources vs. dropping at bottleneck operators

• How much load to shed?
• enough for the system to keep-up

• Which tuples to drop?
• improve latency to an acceptable level
• cause only minimal results quality degradation

9

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Detecting overload
• When to shed load? An incorrectly triggered shedding action can cause

unnecessary result degradation!

• Load shedding components rely on statistics gathered during execution:
• A statistics manager module monitors processing and input rates and periodically

estimates operator selectivities.
• The load shedder assigns a cost, ci, in cycles per tuple, and a selectivity, si, to each

operator i.
• The statistics manager collects metrics and estimates those parameters either

continuously or by running the system for a designated period of time, prior to regular
query execution.

10

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Estimating cost and selectivity

11

• Selectivity: how many records does the operator produce per record in its
input?

• map: 1 in 1 out
• filter: 1 in, 1 or 0 out
• flatMap, join: 1 in 0, 1, or more out

• Cost: how many records can an operator process in a unit of time?

#records_in #records_out

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Overload detection (II)

12

Load coefficient for input I: Total load over m inputs:

I c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0 O

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Overload detection (II)

12

Load coefficient for input I: Total load over m inputs:

I c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0 O

5

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Overload detection (II)

12

Load coefficient for input I: Total load over m inputs:

I c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0 O

512.5

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Overload detection (II)

12

Load coefficient for input I: Total load over m inputs:

I c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0 O

512.5

L=18.75

🤧😷🤒 Vasiliki Kalavri | Boston University 202113

I2 c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0

12.5

L2=18.75

O2

I1 c=10 
s=0.5

c=10
s=0.8

c=5
s=1.0 O1

c=10
s=0.9

5

🤧😷🤒 Vasiliki Kalavri | Boston University 202113

I2 c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0

12.5

L2=18.75

O2

I1 c=10 
s=0.5

c=10
s=0.8

c=5
s=1.0 O1

c=10
s=0.9

514

5

5

19

5

🤧😷🤒 Vasiliki Kalavri | Boston University 202113

I2 c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0

12.5

L2=18.75

O2

I1 c=10 
s=0.5

c=10
s=0.8

c=5
s=1.0 O1

c=10
s=0.9

L1=26.5

514

5

5

19

5

🤧😷🤒 Vasiliki Kalavri | Boston University 202113

I2 c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0

12.5

L2=18.75

O2

I1 c=10 
s=0.5

c=10
s=0.8

c=5
s=1.0 O1

c=10
s=0.9

L1=26.5

514

5

5

19

5

r1=10 r/s

r2=20 r/s

🤧😷🤒 Vasiliki Kalavri | Boston University 202113

I2 c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0

12.5

L2=18.75

O2

I1 c=10 
s=0.5

c=10
s=0.8

c=5
s=1.0 O1

c=10
s=0.9

L1=26.5

514

5

5

19

5

r1=10 r/s

r2=20 r/s

LT=?

🤧😷🤒 Vasiliki Kalavri | Boston University 202113

I2 c=10 
s=0.7

c=10
s=0.5

c=5
s=1.0

12.5

L2=18.75

O2

I1 c=10 
s=0.5

c=10
s=0.8

c=5
s=1.0 O1

c=10
s=0.9

L1=26.5

514

5

5

19

5

r1=10 r/s

r2=20 r/s

LT=640 cycles/s

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Reacting to overload

• Where in the query plan to drop tuples, which tuples, and how many

• The question of where is equivalent to placing special drop operators in
the best positions in the query plan

• Drop operators can be placed at any location in the query plan

• Dropping near the source avoids wasting work but it might affect results of
multiple queries if the source is connected to multiple queries.

14

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Load Shedding Road Map (LSRM)

• A pre-computed table that contains materialized load shedding plans
ordered by how much load shedding they will cause.

• Each row contains a plan with
• expected cycle savings
• locations for drop operations
• drop amounts
• QoS effects (provided that tuples can be associated with a utility metric)

15

🤧😷🤒 Vasiliki Kalavri | Boston University 202116

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Which tuples to drop?
• Relevant when load shedding takes into account the semantic

importance of tuples with respect to results quality

• Drop at random:
• Insert random sampling operators in the query plan, parametrized with a sampling rate
• The rate defines the probability to discard a tuple and is computed based on statistics and

operator selectivity
• The optimization objective is to achieve the highest possible accuracy given the constraint that

system throughput matches the data input rate
• In the case of known aggregation functions, results can be scaled using approximate query

processing techniques, where accuracy is measured in terms of relative error in the computed
query answers.

17

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Which tuples to drop?
• Window-aware load shedding applies shedding to entire windows

instead of individual tuples
• When discarding tuples at the sources or another point in a query with multiple window

aggregations, it is unclear how shedding will affect the correctness of downstream window
operators.

• This approach preserves window integrity and guarantees that the results under shedding will
not be approximations but a subset of the exact answers.

• Concept-driven load shedding measures tuple utility
• The method selects tuples to discard by relying on the notion of a window-based concept drift.
• The metric is defined by computing a similarity metric across windows.

18

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

How many tuples to drop?
• The amount of tuples to discard strongly depends on the decisions of where

and which tuples to shed.

• If input rates and processing capacity are known or easy to measure, estimates
can be computed in a straight-forward manner.

• Estimations based on static operator selectivities and heuristics are unsuitable
for frequent load fluctuations.

• Naive approaches can lead to system instability or unnecessary load shedding.

• In window-aware load shedding, queries need to define a batch size: an
application-specific maximum tolerance to gaps.

• This parameter indicates how many consecutive missing results the query can tolerate.

19

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Backpressure

20

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Rate control
• In a network of consumers and producers such as a streaming execution graph with

multiple operators, back-pressure has the effect that all operators slow down to match
the processing speed of the slowest consumer.

• If the bottleneck operator is far down the dataflow graph, back-pressure propagates to
upstream operators, eventually reaching the data stream sources.

• To ensure no data loss, a persistent input message queue, such as Kafka, and enough
storage is required.

21

o1src o2

back-pressure
target: 40 rec/s

10 rec/s 100 rec/s

🤧😷🤒 Vasiliki Kalavri | Boston University 202122

🤧😷🤒 Vasiliki Kalavri | Boston University 202122

Durably buffer
events in a channel

or source

Adjust processing rate of all
operators to that of the

slowest part of the pipeline

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Control rate through buffer availability

• All operators slow down to match the processing speed of the slowest
consumer.

• To ensure no data loss, a persistent input queue (e.g. Kafka) and enough
storage is required.

23

Back-pressure propagates to the sources

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Control rate through buffer availability

• All operators slow down to match the processing speed of the slowest
consumer.

• To ensure no data loss, a persistent input queue (e.g. Kafka) and enough
storage is required.

23

back-pressure

Back-pressure propagates to the sources

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Local exchange

24

shared buffer pool

1. request buffer

2. retrieve buffer

3. write output to buffer

4. consume buffer content

5. recycle buffer

The producer slows down according to the rate the consumer recycles buffers.

The producer and consumer run on the same machine

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Remote exchange

• If there is no buffer on the consumer side, reading from the TCP
connection is interrupted.

• The producer is slowed down if it cannot put new data on the wire.

25

logical connections

physical connection (e.g. TCP)buffer pool buffer pool

N1 N2

The producer and consumer run on different machines

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Credit-based flow control

Buffer space availability is signaled from
receivers to senders via a credit system.

26

credit: 1

credit: 4
Senders maintain a credit balance for all
their receivers and receivers regularly
send notifications upstream containing
their available credits.

Link-by-link congestion control

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Buffer-based vs. CFC

• CFC inflicts back-pressure on pairs of communicating tasks only.

• In the presence of bursty traffic, CFC causes back-pressure to build up
fast and propagate along congested VCs to their sources which can be
throttled.

• In the presence of skew, CFC avoids blocking the flow of data to
downstream operators due to a single overloaded task.

• On the downside, the additional credit announcement messages might
increase end-to-end latency.

27

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Lecture references
• Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stonebraker. Load

shedding in a data stream manager. (VLDB ’03)

• N. Tatbul and S. Zdonik. Window-aware load shedding for aggregation queries over data
streams. (VLDB’06)

• N. Tatbul, U. Çetintemel, and S. Zdonik. Staying fit: Efficient load shedding techniques for
distributed stream processing. (VLDB’07)

• N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. Concept-driven load shedding: Reducing
size and error of voluminous and variable data streams. (IEEE Big Data ’18)

• H. T. Kung, T. Blackwell, and A. Chapman. Credit-based flow control for atm networks: Credit
update protocol, adaptive credit allocation and statistical multiplexing. (ACM SGCOMM’94).

• https://www.ververica.com/blog/how-flink-handles-backpressure

• https://flink.apache.org/2019/06/05/flink-network-stack.html

28

https://www.ververica.com/blog/how-flink-handles-backpressure
https://flink.apache.org/2019/06/05/flink-network-stack.html
https://www.ververica.com/blog/how-flink-handles-backpressure
https://flink.apache.org/2019/06/05/flink-network-stack.html

