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Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers 
can process events.
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Keeping up with the producers

• Producers can generate events in a higher rate than the rate consumers 
can process events.

• What happens if consumers cannot keep up with the event rate?
• drop messages
• buffer messages in a queue: what if the queue grows larger than available memory?
• block the producer (back-pressure, flow control)
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Load management approaches
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!Load 
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(a) Load shedding (b) Back-pressure (c) Elasticity

Selectively drop records: 

• Temporarily trades-off result 
accuracy for sustainable 
performance. 

• Suitable for applications with strict 
latency constraints that can tolerate 
approximate results.

Slow down the flow of data: 

• The system buffers excess data for 
later processing, once input rates 
stabilize.  

• Requires a persistent input source. 
• Suitable for transient load increase.

Scale resource allocation: 

• Addresses the case of increased 
load and additionally ensures no 
resources are left idle when the 
input load decreases.
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Load shedding

• Load shedding is the process of discarding data when input rates 
increase beyond system capacity. 

• Load shedding techniques operate in a dynamic fashion: the system 
detects an overload situation during runtime and selectively drops tuples 
according to a QoS specification. 

• Similar to congestion control or video streaming in a lower quality.
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https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png 
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Load shedding as an optimization problem

N: query network 
I: set of input streams with known arrival rates 
C: system processing capacity 
H: headroom factor, i.e. a conservative estimate of the percentage of resources required by the system at steady state 
Load(N(I)): the load as a fraction of the total capacity C that network N(I) presents 
Uacc: the aggregate utility 

6

Find a new network N' such that  

Load(N’(I))< H x C and 

Uacc(N(I)) - Uacc(N'I)) is minimized
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Implementation

• Load shedding is commonly implemented by a standalone component 
integrated with the stream processor 

• The load shedder continuously monitors input rates or other system 
metrics and can access information about the running query plan  

• It detects overload and decides what actions to take in order to maintain acceptable 
latency and minimize result quality degradation.
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DSMS with load shedder
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Load shedding decisions
• When to shed load? 

• detect overload quickly to avoid latency increase 
• monitor input rates 

• Where in the query plan? 
• dropping at the sources vs. dropping at bottleneck operators 

• How much load to shed? 
• enough for the system to keep-up 

• Which tuples to drop? 
• improve latency to an acceptable level  
• cause only minimal results quality degradation
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Detecting overload
• When to shed load? An incorrectly triggered shedding action can cause 

unnecessary result degradation! 

• Load shedding components rely on statistics gathered during execution: 
• A statistics manager module monitors processing and input rates and periodically 

estimates operator selectivities.  
• The load shedder assigns a cost, ci, in cycles per tuple, and a selectivity, si, to each 

operator i.  
• The statistics manager collects metrics and estimates those parameters either 

continuously or by running the system for a designated period of time, prior to regular 
query execution.
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Estimating cost and selectivity
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• Selectivity: how many records does the operator produce per record in its 
input? 

• map: 1 in 1 out 
• filter: 1 in, 1 or 0 out 
• flatMap, join: 1 in 0, 1, or more out 

• Cost: how many records can an operator process in a unit of time?

#records_in #records_out
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Overload detection (II)
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Load coefficient for input I: Total load over m inputs:
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Overload detection (II)

12

Load coefficient for input I: Total load over m inputs:

I c=10 
s=0.7

c=10 
s=0.5

c=5 
s=1.0 O

512.5



🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Overload detection (II)
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Load coefficient for input I: Total load over m inputs:
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Reacting to overload

• Where in the query plan to drop tuples, which tuples, and how many 

• The question of where is equivalent to placing special drop operators in 
the best positions in the query plan 

• Drop operators can be placed at any location in the query plan 

• Dropping near the source avoids wasting work but it might affect results of 
multiple queries if the source is connected to multiple queries.

14



🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Load Shedding Road Map (LSRM)

• A pre-computed table that contains materialized load shedding plans 
ordered by how much load shedding they will cause. 

• Each row contains a plan with  
• expected cycle savings 
• locations for drop operations 
• drop amounts 
• QoS effects (provided that tuples can be associated with a utility metric)
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Which tuples to drop?
• Relevant when load shedding takes into account the semantic 

importance of tuples with respect to results quality 

• Drop at random: 
• Insert random sampling operators in the query plan, parametrized with a sampling rate  
• The rate defines the probability to discard a tuple and is computed based on statistics and 

operator selectivity 
• The optimization objective is to achieve the highest possible accuracy given the constraint that 

system throughput matches the data input rate 
• In the case of known aggregation functions, results can be scaled using approximate query 

processing techniques, where accuracy is measured in terms of relative error in the computed 
query answers.
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Which tuples to drop?
• Window-aware load shedding applies shedding to entire windows 

instead of individual tuples 
• When discarding tuples at the sources or another point in a query with multiple window 

aggregations, it is unclear how shedding will affect the correctness of downstream window 
operators.  

• This approach preserves window integrity and guarantees that the results under shedding will 
not be approximations but a subset of the exact answers. 

• Concept-driven load shedding measures tuple utility  
• The method selects tuples to discard by relying on the notion of a window-based concept drift.  
• The metric is defined by computing a similarity metric across windows.
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How many tuples to drop?
• The amount of tuples to discard strongly depends on the decisions of where 

and which tuples to shed.  

• If input rates and processing capacity are known or easy to measure, estimates 
can be computed in a straight-forward manner.  

• Estimations based on static operator selectivities and heuristics are unsuitable 
for frequent load fluctuations.  

• Naive approaches can lead to system instability or unnecessary load shedding. 

• In window-aware load shedding, queries need to define a batch size: an 
application-specific maximum tolerance to gaps. 

• This parameter indicates how many consecutive missing results the query can tolerate. 
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Backpressure
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Rate control
• In a network of consumers and producers such as a streaming execution graph with 

multiple operators, back-pressure has the effect that all operators slow down to match 
the processing speed of the slowest consumer.  

• If the bottleneck operator is far down the dataflow graph, back-pressure propagates to 
upstream operators, eventually reaching the data stream sources.  

• To ensure no data loss, a persistent input message queue, such as Kafka, and enough 
storage is required.

21

o1src o2

back-pressure
target: 40 rec/s
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Durably buffer 
events in a channel 

or source

Adjust processing rate of all 
operators to that of the 

slowest part of the pipeline
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Control rate through buffer availability

• All operators slow down to match the processing speed of the slowest 
consumer.  

• To ensure no data loss, a persistent input queue (e.g. Kafka) and enough 
storage is required.
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Back-pressure propagates to the sources
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Back-pressure propagates to the sources



🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Local exchange
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shared buffer pool

1. request buffer

2. retrieve buffer

3. write output to buffer

4. consume buffer content

5. recycle buffer

The producer slows down according to the rate the consumer recycles buffers.

The producer and consumer run on the same machine
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Remote exchange

• If there is no buffer on the consumer side, reading from the TCP 
connection is interrupted.  

• The producer is slowed down if it cannot put new data on the wire.
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logical connections

physical connection (e.g. TCP)buffer pool buffer pool

N1 N2

The producer and consumer run on different machines
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Credit-based flow control

Buffer space availability is signaled from 
receivers to senders via a credit system. 
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credit: 1

credit: 4
Senders maintain a credit balance for all 
their receivers and receivers regularly 
send notifications upstream containing 
their available credits. 

Link-by-link congestion control
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Buffer-based vs. CFC

• CFC inflicts back-pressure on pairs of communicating tasks only.  

• In the presence of bursty traffic, CFC causes back-pressure to build up 
fast and propagate along congested VCs to their sources which can be 
throttled.  

• In the presence of skew, CFC avoids blocking the flow of data to 
downstream operators due to a single overloaded task. 

• On the downside, the additional credit announcement messages might 
increase end-to-end latency.
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