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Streaming applications are long-running 
• Workload will change 
• Conditions might change 
• State is accumulated over time
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Control: When and how much to adapt?

Mechanism: How to apply the re-configuration?

3

• Detect environment changes: external workload and system 
performance 

• Identify bottleneck operators, straggler workers, skew 
• Enumerate scaling actions, predict their effects, and decide which and 

when to apply

• Allocate new resources, spawn new processes or release unused 
resources, safely terminate processes 

• Adjust dataflow channels and network connections 
• Re-partition and migrate state in a consistent manner 
• Block and unblock computations to ensure result correctness
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Automatic Scaling 
Control

4
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Elastic streaming systems 

Given a logical dataflow with sources S1, S2, … Sn and rates λ1, λ2, 
… λn identify the minimum parallelism πi per operator i, such 

that the physical dataflow can sustain all source rates.

S1

S2

λ1

λ2

S1

S2

π=2

π=3

logical dataflow physical dataflow

Adaptive resource scaling according to the workload 
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Accuracy: no over/under-provisioning

Stability: no oscillations

Performance: fast convergence

Scaling Controller

metrics policy scaling action

Service time, waiting 
time, CPU utilization, 
congestion, back-
pressure, throughput

Predictive: Queuing theory, 
control theory, analytical 
dataflow-based models

Heuristic: Rule-based models, 
e.g. if CPU utilization > 70% => 
scale out

Dataflow-wide: at-
once for all operators


Speculative: small 
changes at one 
operator at a time

Detect symptoms Decide whether to scale Decide how much to scale
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Heuristic Policy
Dhalion (VLDB’17)
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Diagnosers

Over-
provisioned

Under-
provisioned

Skew

Stragglers

Symptom 
Detectors

Pending 
tuples

Back-
pressure

Load 
imbalance

Resolvers

Scale down

Scale up

Change 
partitioning

Restart

Metrics

• An action log records 
policies and 
associated diagnoses


• A blocklist records 
actions that did not 
produce the expected 
outcome
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effect of Dhalion’s scaling actions 
in an initially under-provisioned wordcount dataflow

1
2

3 654
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Dataflow worker activities
worker 1

worker 2

worker 3

receive 
message

deserialization

processing

serialization
send 

message

waiting

waiting

9
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o1src

back-pressure
target: 40 rec/s

10 rec/s 100 rec/s

Which operator is the bottleneck?

What if we scale ο1 x 4?

How much to scale ο2?

o1 cannot keep up

waiting for output

waiting for input

src

o1

o2

o2 cannot keep up

src

o1

o2

o2
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Predictive Policy
Three steps is all you need - DS2 (OSDI’18)

11

src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

• It uses a linear model of operator dependencies as defined by the dataflow graph.


• It relies on system instrumentation to collect accurate, representative metrics.


• It computes rates as if operator instances are executed in an ideal setting.

target: 40 rec/s

0.5s
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Predictive Policy
Three steps is all you need - DS2 (OSDI’18)

11

src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

• It uses a linear model of operator dependencies as defined by the dataflow graph.


• It relies on system instrumentation to collect accurate, representative metrics.


• It computes rates as if operator instances are executed in an ideal setting.

True rate = 200 recs/sx4 instances 
to keep up 

with src rate

x2 instances 
to keep up 
with x4 o1 
instances

target: 40 rec/s

0.5s
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src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Observation Window W

0.5s
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src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Observation Window W

0.5s

Instrumentation Metrics

Records 
processed Rpcd

20 200

Records  
pushed Rpsd

200 -

Useful time Wu 2s 1s

o2o1
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The DS2 model

13
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The DS2 model

• Collect metrics per configurable observation window W
• activity durations per worker 
• records processed Rprc and records pushed to output Rpsd

13
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The DS2 model

• Collect metrics per configurable observation window W
• activity durations per worker 
• records processed Rprc and records pushed to output Rpsd

• Capture dependencies through the dataflow graph
• assign an increasing sequential id to all operators in topological order, starting from the 

sources
• represent as an adjacency matrix A 

• Aij = 1 iff operator i is upstream neighbor of j

13
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The time spent by an operator instance in deserialization, processing, 
and serialization activities. 

• excludes any time spent waiting on input or on output 

• amounts to the time an operator instance runs for if executed in an 
ideal setting 

• when there is no waiting the useful time is equal to the observed time

14

Useful time Wu
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True processing / output rates

Aggregated true processing / output rates

15
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Optimal parallelism per operator



🤧😷🤒 Vasiliki Kalavri | Boston University 202116

Optimal parallelism per operator

captures 
upstream operators
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Optimal parallelism per operator

captures 
upstream operators

Aggregated true 
output rate of 

operator oj , when oj 
itself and all 

upstream ops 
are deployed with 
optimal parallelism
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Optimal parallelism per operator

captures 
upstream operators

Aggregated true 
output rate of 

operator oj , when oj 
itself and all 

upstream ops 
are deployed with 
optimal parallelism

current parallelism 
of operator i
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–Johnny Appleseed

“Type a quote here.” 

17

Recursively computed as:
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–Johnny Appleseed

“Type a quote here.” 

17

Recursively computed as:
True output rate 

of source j



🤧😷🤒 Vasiliki Kalavri | Boston University 2021

–Johnny Appleseed

“Type a quote here.” 

17

Recursively computed as:

It can be computed for all 
operators by traversing the 

dataflow from left to right once

True output rate 
of source j
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Example

18

i=1
i=2

i=3

i=4

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s
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Example

18

i=1
i=2

i=3

i=4

o1[λp] = 0 
o1[λo] = 2000 r/s

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

o2[λp] = 1000 r/s 
o2[λo] = 3800 r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

o3[λp] = 2930 r/s 
o3[λo] = 600 r/s
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Example

18

i=1
i=2

i=3

i=4

o1[λp] = 0 
o1[λo] = 2000 r/s

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

o2[λp] = 1000 r/s 
o2[λo] = 3800 r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

o3[λp] = 2930 r/s 
o3[λo] = 600 r/s

π2 = o1[λ*o ] *
p2

o2[λp]
= 2000 *

2
1000

= 4
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Example

18

i=1
i=2

i=3

i=4

o1[λp] = 0 
o1[λo] = 2000 r/s

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

o2[λp] = 1000 r/s 
o2[λo] = 3800 r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

o3[λp] = 2930 r/s 
o3[λo] = 600 r/s

π2 = o1[λ*o ] *
p2

o2[λp]
= 2000 *

2
1000

= 4

π3 = o2[λ*o ] *
p3

o3[λp]
= 7600 *

3
2930

≈ 7.78 → 8
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DS2 model properties

If operator scaling is linear, then: 

• no overshoot when scaling up 
• no undershoot when scaling down

19
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DS2 model properties

If operator scaling is linear, then: 

• no overshoot when scaling up 
• no undershoot when scaling down
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initial rate

target
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initial rate
target
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DS2 model properties

If operator scaling is linear, then: 

• no overshoot when scaling up 
• no undershoot when scaling down

19

parallelism

initial rate

target

predict
ion

p0 p1

parallelism

initial rate
target

p0p1

Ideal rates act as un upper bound 
when scaling up and as a lower bound 
when scaling down: 

DS2 will converge monotonically to 
the target rate

prediction

p’

p’
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DS2 model properties

If operator scaling is linear, then: 

• no overshoot when scaling up 
• no undershoot when scaling down

19

parallelism

initial rate

target

predict
ion

p0 p1

parallelism

initial rate
target

p0p1

Ideal rates act as un upper bound 
when scaling up and as a lower bound 
when scaling down: 

DS2 will converge monotonically to 
the target rate

prediction

actual

actual
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parallelism

initial rate

target
actual

error

p0 p1

predict
ion

x
x
x

DS2 model properties

20
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parallelism

initial rate

target
actual

p0 p1

x

new predictio
n

DS2 model properties

20
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parallelism

initial rate

target
actual

p0 p1

x error

p1’

new predictio
n

Gradually minimizes error

DS2 model properties

20
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Scaling Manager Scaling Policy

Metrics 
Repository

invoke

re-scale job

report metrics

monitor

pull metrics

decision

Timely dataflow
Apache Flink

Instrumented 
stream processor
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Initially under-provisioned wordcount dataflow
Target rate:  16.700 rec/s
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Initially under-provisioned wordcount dataflow
Target rate:  16.700 rec/s

DS2 converges in a 
single step for 
both operators
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Initially under-provisioned wordcount dataflow
Target rate:  16.700 rec/s

DS2 converges in a 
single step for 
both operators

and converges in 
60s, as soon as it 
receives the 
Heron metrics
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Initially under-provisioned wordcount dataflow
Target rate:  16.700 rec/s

DS2 converges in a 
single step for 
both operators

Dhalion scales 
one operator at a 
time, and needs 
six steps in total

1

6

5

43
2and converges in 

60s, as soon as it 
receives the 
Heron metrics
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Initially under-provisioned wordcount dataflow
Target rate:  16.700 rec/s

DS2 converges in a 
single step for 
both operators

and converges in 2000s

Dhalion scales 
one operator at a 
time, and needs 
six steps in total

1

6

5

43
2and converges in 

60s, as soon as it 
receives the 
Heron metrics
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Initially under-provisioned wordcount dataflow

+10 counts

+12 mappers

Target rate:  16.700 rec/s

DS2 converges in a 
single step for 
both operators

and converges in 2000s

Dhalion scales 
one operator at a 
time, and needs 
six steps in total

1

6

5

43
2and converges in 

60s, as soon as it 
receives the 
Heron metrics
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DS2 on Flink
Initially under-provisioned wordcount 

Target rate: 2.000.000 rec/s, drops to half at 800s
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DS2 on Flink
Initially under-provisioned wordcount 

Target rate: 2.000.000 rec/s, drops to half at 800s

DS2 converges in  
2 steps for both 
operators

1

2
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DS2 on Flink
Initially under-provisioned wordcount 

Target rate: 2.000.000 rec/s, drops to half at 800s

DS2 reacts within 
3s when the target 

rate drops

DS2 converges in  
2 steps for both 
operators

1

2
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DS2 on Flink
Initially under-provisioned wordcount 

Target rate: 2.000.000 rec/s, drops to half at 800s

DS2 reacts within 
3s when the target 

rate drops

DS2 converges in  
2 steps for both 
operators

1

2

Transient 
underpovisioning 

by 1 instance
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DS2 scaling actions on Apache Flink wordcount
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DS2 scaling actions on Apache Flink wordcount

Every reconfiguration 
takes ~30s during which 
the system is unavailable
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DS2 scaling actions on Apache Flink wordcount

Every reconfiguration 
takes ~30s during which 
the system is unavailable

Re-configuration requires state migration with correctness guarantees.
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Elasticity mechanisms
Applying the reconfiguration

• Stop-and-restart - Dhalion (VLDB’17), DS2 (OSDI’18), Turbine (ICDE’20)

• Halt the whole computation, take a state snapshot of all operators, restart


• Partial pause and restart 
• Temporarily block the affected dataflow subgraph only


• Pro-active replication 
• Maintain state replicas in multiple nodes for reconfiguration purposes

25
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b

Partial-pause-and-restart
FUGU(DEBS’14), Seep(SIGMOD’13)

1. Pause a’s upstream operators and start 
buffering events in their input channels.


2. Process all remaining events in a’s input 
buffers and then extract its state.


3. Move a’s state to b.

4. Operator b loads state and sends “restart” 

signal to upstream operators.

26

a

Migrating state from a to b
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b

Partial-pause-and-restart
FUGU(DEBS’14), Seep(SIGMOD’13)

1. Pause a’s upstream operators and start 
buffering events in their input channels.


2. Process all remaining events in a’s input 
buffers and then extract its state.


3. Move a’s state to b.

4. Operator b loads state and sends “restart” 

signal to upstream operators.

26

a

block channels

and upstream operators

buffer 

incoming records

Migrating state from a to b

1
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b

Partial-pause-and-restart
FUGU(DEBS’14), Seep(SIGMOD’13)

1. Pause a’s upstream operators and start 
buffering events in their input channels.


2. Process all remaining events in a’s input 
buffers and then extract its state.


3. Move a’s state to b.

4. Operator b loads state and sends “restart” 

signal to upstream operators.

26

a

block channels

and upstream operators

buffer 

incoming records

Migrating state from a to b

1

2
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b

Partial-pause-and-restart
FUGU(DEBS’14), Seep(SIGMOD’13)

1. Pause a’s upstream operators and start 
buffering events in their input channels.


2. Process all remaining events in a’s input 
buffers and then extract its state.


3. Move a’s state to b.

4. Operator b loads state and sends “restart” 

signal to upstream operators.

26

a

block channels

and upstream operators

buffer 

incoming records

Migrating state from a to b

1

2

3
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b

Partial-pause-and-restart
FUGU(DEBS’14), Seep(SIGMOD’13)

1. Pause a’s upstream operators and start 
buffering events in their input channels.


2. Process all remaining events in a’s input 
buffers and then extract its state.


3. Move a’s state to b.

4. Operator b loads state and sends “restart” 

signal to upstream operators.

26

a

block channels

and upstream operators

buffer 

incoming records

Migrating state from a to b

1

2

3

restart
4
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Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move 
and informs c1, c2.


2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream 

instances pi

3. pi receives the pause and marks partitions as 

stalled, stops consuming from its corresponding 
input buffer, and sends an ack to c1 


4. After c1  receives all acks:

a. s1 transfers the partitions to s2 

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the 

controller

Migrating state from c1 to c2
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Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move 
and informs c1, c2.


2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream 

instances pi

3. pi receives the pause and marks partitions as 

stalled, stops consuming from its corresponding 
input buffer, and sends an ack to c1 


4. After c1  receives all acks:

a. s1 transfers the partitions to s2 

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the 

controller

Migrating state from c1 to c2

1
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Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move 
and informs c1, c2.


2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream 

instances pi

3. pi receives the pause and marks partitions as 

stalled, stops consuming from its corresponding 
input buffer, and sends an ack to c1 


4. After c1  receives all acks:

a. s1 transfers the partitions to s2 

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the 

controller

Migrating state from c1 to c2

1

2.a

receive
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Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move 
and informs c1, c2.


2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream 

instances pi

3. pi receives the pause and marks partitions as 

stalled, stops consuming from its corresponding 
input buffer, and sends an ack to c1 


4. After c1  receives all acks:

a. s1 transfers the partitions to s2 

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the 

controller

Migrating state from c1 to c2

1

2.a

2.b

receive

pause
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Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move 
and informs c1, c2.


2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream 

instances pi

3. pi receives the pause and marks partitions as 

stalled, stops consuming from its corresponding 
input buffer, and sends an ack to c1 


4. After c1  receives all acks:

a. s1 transfers the partitions to s2 

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the 

controller

Migrating state from c1 to c2

1

2.a

2.b

3

receive

pause

ack
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Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move 
and informs c1, c2.


2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream 

instances pi

3. pi receives the pause and marks partitions as 

stalled, stops consuming from its corresponding 
input buffer, and sends an ack to c1 


4. After c1  receives all acks:

a. s1 transfers the partitions to s2 

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the 

controller

Migrating state from c1 to c2
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Partial-pause-and-restart
FLUX (ICDE’03)
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p2

s1

s2

ctrl

1. The controller generates a list of partitions to move 
and informs c1, c2.


2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream 

instances pi

3. pi receives the pause and marks partitions as 

stalled, stops consuming from its corresponding 
input buffer, and sends an ack to c1 


4. After c1  receives all acks:

a. s1 transfers the partitions to s2 

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the 

controller

Migrating state from c1 to c2
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Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move 
and informs c1, c2.


2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream 

instances pi

3. pi receives the pause and marks partitions as 

stalled, stops consuming from its corresponding 
input buffer, and sends an ack to c1 


4. After c1  receives all acks:

a. s1 transfers the partitions to s2 

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the 

controller

Migrating state from c1 to c2

1

2.a

2.b

3
4.a

4.b

4.c
receive

pause

ack
restart
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Nsrc

1 2 3 4

5 6 7 8

primary

backup

Ndest

5 6 7 8

1 2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and 

the slice progress. In the meantime, Nsrc keeps 
processing events destined for slice #1.


3. The leader notifies upstream operators to re-
play events according to the progress metric 
provided by Ndest.


4. Upstream nodes receive the message and re-
route events to Ndest.


5. The leader notifies Nsrc that the transfer is 
complete.


6. Nsrc consumes remaining data in its buffers 
and moves slice #1 to the backup group.

Nup
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Ndest
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leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and 

the slice progress. In the meantime, Nsrc keeps 
processing events destined for slice #1.


3. The leader notifies upstream operators to re-
play events according to the progress metric 
provided by Ndest.


4. Upstream nodes receive the message and re-
route events to Ndest.


5. The leader notifies Nsrc that the transfer is 
complete.


6. Nsrc consumes remaining data in its buffers 
and moves slice #1 to the backup group.

Nup

1 load #1
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Nsrc

1 2 3 4

5 6 7 8

primary

backup

Ndest

5 6 7 8

2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and 

the slice progress. In the meantime, Nsrc keeps 
processing events destined for slice #1.


3. The leader notifies upstream operators to re-
play events according to the progress metric 
provided by Ndest.


4. Upstream nodes receive the message and re-
route events to Ndest.


5. The leader notifies Nsrc that the transfer is 
complete.


6. Nsrc consumes remaining data in its buffers 
and moves slice #1 to the backup group.

Nup

1 load #1

1
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Nsrc

1 2 3 4

5 6 7 8

primary

backup

Ndest

5 6 7 8

2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and 

the slice progress. In the meantime, Nsrc keeps 
processing events destined for slice #1.


3. The leader notifies upstream operators to re-
play events according to the progress metric 
provided by Ndest.


4. Upstream nodes receive the message and re-
route events to Ndest.


5. The leader notifies Nsrc that the transfer is 
complete.


6. Nsrc consumes remaining data in its buffers 
and moves slice #1 to the backup group.

Nup

1 load #1

1

p1 2
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Nsrc
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primary

backup

Ndest

5 6 7 8

2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and 

the slice progress. In the meantime, Nsrc keeps 
processing events destined for slice #1.


3. The leader notifies upstream operators to re-
play events according to the progress metric 
provided by Ndest.


4. Upstream nodes receive the message and re-
route events to Ndest.


5. The leader notifies Nsrc that the transfer is 
complete.


6. Nsrc consumes remaining data in its buffers 
and moves slice #1 to the backup group.

Nup

1 load #1

1

p1 2

p1 3
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Nsrc
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5 6 7 8

primary

backup

Ndest

5 6 7 8

2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and 

the slice progress. In the meantime, Nsrc keeps 
processing events destined for slice #1.


3. The leader notifies upstream operators to re-
play events according to the progress metric 
provided by Ndest.


4. Upstream nodes receive the message and re-
route events to Ndest.


5. The leader notifies Nsrc that the transfer is 
complete.


6. Nsrc consumes remaining data in its buffers 
and moves slice #1 to the backup group.

Nup

1 load #1

1

p1 2

p1 3
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leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and 

the slice progress. In the meantime, Nsrc keeps 
processing events destined for slice #1.


3. The leader notifies upstream operators to re-
play events according to the progress metric 
provided by Ndest.


4. Upstream nodes receive the message and re-
route events to Ndest.


5. The leader notifies Nsrc that the transfer is 
complete.


6. Nsrc consumes remaining data in its buffers 
and moves slice #1 to the backup group.

Nup

1 load #1

1

p1 2

p1 3
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Nsrc

2 3 4

5 6 7 8

primary

backup

Ndest

5 6 7 8

2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and 

the slice progress. In the meantime, Nsrc keeps 
processing events destined for slice #1.


3. The leader notifies upstream operators to re-
play events according to the progress metric 
provided by Ndest.


4. Upstream nodes receive the message and re-
route events to Ndest.


5. The leader notifies Nsrc that the transfer is 
complete.


6. Nsrc consumes remaining data in its buffers 
and moves slice #1 to the backup group.

Nup

1 load #1

1

p1 2

p1 3

4

5

1
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State transfer strategies

All-at-once 
• Move state to be migrated in one operation

• High latency during migration if the state is large


Progressive 
• Move state to be migrated in smaller pieces, e.g. key-by-key

• It enables interleaving state transfer with processing

• Migration duration might increase

29
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Progressive State migration
Megaphone (VLDB’19)

30

S<key, value, time>
data input
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S<key, value, time>
data input

H S

<key, value, time>

<key, worker, time>

data input

control input

shared state

Each stateful operator is augmented with a 
helper upstream operator which accepts a 
control stream as input

Control inputs have timestamps and 
participate in the progress protocol (e.g. 
advance and propagate watermarks)
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S<key, value, time>
data input

H S

<key, value, time>

<key, worker, time>

data input

control input

shared state

Helper operators are 
hidden from the 

application developer

Each stateful operator is augmented with a 
helper upstream operator which accepts a 
control stream as input

Control inputs have timestamps and 
participate in the progress protocol (e.g. 
advance and propagate watermarks)
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Progressive State migration
Megaphone (VLDB’19)
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H

H

H

control input

Helper operators: 

• buffer data that cannot be safely routed yet 
and configuration commands that cannot 
yet be applied 

• check the frontier (watermark) at the 
output of the stateful operator to ensure 
only complete state is migrated
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control input

Helper operators: 

• buffer data that cannot be safely routed yet 
and configuration commands that cannot 
yet be applied 

• check the frontier (watermark) at the 
output of the stateful operator to ensure 
only complete state is migrated
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H

H

H

get state

control input

Helper operators: 

• buffer data that cannot be safely routed yet 
and configuration commands that cannot 
yet be applied 

• check the frontier (watermark) at the 
output of the stateful operator to ensure 
only complete state is migrated
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H

H

H

transfer state

control input

Helper operators: 

• buffer data that cannot be safely routed yet 
and configuration commands that cannot 
yet be applied 

• check the frontier (watermark) at the 
output of the stateful operator to ensure 
only complete state is migrated
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H

H

H

control input

Helper operators: 

• buffer data that cannot be safely routed yet 
and configuration commands that cannot 
yet be applied 

• check the frontier (watermark) at the 
output of the stateful operator to ensure 
only complete state is migrated
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