
🤧😷🤒 Vasiliki Kalavri | Boston University 2021

CS 591 K1:
Data Stream Processing and Analytics

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

Spring 2021

Elasticity policies and state migration

mailto:vkalavri@bu.edu
mailto:vkalavri@bu.edu

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Streaming applications are long-running
• Workload will change
• Conditions might change
• State is accumulated over time

2

ev
en

ts
/s

time

rate decrease

ev
en

ts
/s

time

throughput
degradation

ev
en

ts
/s

time

rate increase

: input rate : throughput

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Control: When and how much to adapt?

Mechanism: How to apply the re-configuration?

3

• Detect environment changes: external workload and system
performance

• Identify bottleneck operators, straggler workers, skew
• Enumerate scaling actions, predict their effects, and decide which and

when to apply

• Allocate new resources, spawn new processes or release unused
resources, safely terminate processes

• Adjust dataflow channels and network connections
• Re-partition and migrate state in a consistent manner
• Block and unblock computations to ensure result correctness

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Automatic Scaling
Control

4

🤧😷🤒 Vasiliki Kalavri | Boston University 20215

Elastic streaming systems

Given a logical dataflow with sources S1, S2, … Sn and rates λ1, λ2,
… λn identify the minimum parallelism πi per operator i, such

that the physical dataflow can sustain all source rates.

S1

S2

λ1

λ2

S1

S2

π=2

π=3

logical dataflow physical dataflow

Adaptive resource scaling according to the workload

🤧😷🤒 Vasiliki Kalavri | Boston University 2021
6

Accuracy: no over/under-provisioning

Stability: no oscillations

Performance: fast convergence

Scaling Controller

metrics policy scaling action

Service time, waiting
time, CPU utilization,
congestion, back-
pressure, throughput

Predictive: Queuing theory,
control theory, analytical
dataflow-based models

Heuristic: Rule-based models,
e.g. if CPU utilization > 70% =>
scale out

Dataflow-wide: at-
once for all operators

Speculative: small
changes at one
operator at a time

Detect symptoms Decide whether to scale Decide how much to scale

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Heuristic Policy
Dhalion (VLDB’17)

7

Diagnosers

Over-
provisioned

Under-
provisioned

Skew

Stragglers

Symptom
Detectors

Pending
tuples

Back-
pressure

Load
imbalance

Resolvers

Scale down

Scale up

Change
partitioning

Restart

Metrics

• An action log records
policies and
associated diagnoses

• A blocklist records
actions that did not
produce the expected
outcome

🤧😷🤒 Vasiliki Kalavri | Boston University 20218

🤧😷🤒 Vasiliki Kalavri | Boston University 20218

effect of Dhalion’s scaling actions
in an initially under-provisioned wordcount dataflow

1
2

3 654

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Dataflow worker activities
worker 1

worker 2

worker 3

receive
message

deserialization

processing

serialization
send

message

waiting

waiting

9

🤧😷🤒 Vasiliki Kalavri | Boston University 2021
10

o1src

back-pressure
target: 40 rec/s

10 rec/s 100 rec/s

Which operator is the bottleneck?

What if we scale ο1 x 4?

How much to scale ο2?

o1 cannot keep up

waiting for output

waiting for input

src

o1

o2

o2 cannot keep up

src

o1

o2

o2

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Predictive Policy
Three steps is all you need - DS2 (OSDI’18)

11

src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

• It uses a linear model of operator dependencies as defined by the dataflow graph.

• It relies on system instrumentation to collect accurate, representative metrics.

• It computes rates as if operator instances are executed in an ideal setting.

target: 40 rec/s

0.5s

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Predictive Policy
Three steps is all you need - DS2 (OSDI’18)

11

src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

• It uses a linear model of operator dependencies as defined by the dataflow graph.

• It relies on system instrumentation to collect accurate, representative metrics.

• It computes rates as if operator instances are executed in an ideal setting.

True rate = 200 recs/sx4 instances
to keep up

with src rate

x2 instances
to keep up
with x4 o1
instances

target: 40 rec/s

0.5s

🤧😷🤒 Vasiliki Kalavri | Boston University 202112

src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Observation Window W

0.5s

🤧😷🤒 Vasiliki Kalavri | Boston University 202112

src

o1

o2

10 recs 10 recs

1 2 3 4

100 rec 100 recs

Observation Window W

0.5s

Instrumentation Metrics

Records
processed Rpcd

20 200

Records
pushed Rpsd

200 -

Useful time Wu 2s 1s

o2o1

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

The DS2 model

13

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

The DS2 model

• Collect metrics per configurable observation window W
• activity durations per worker
• records processed Rprc and records pushed to output Rpsd

13

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

The DS2 model

• Collect metrics per configurable observation window W
• activity durations per worker
• records processed Rprc and records pushed to output Rpsd

• Capture dependencies through the dataflow graph
• assign an increasing sequential id to all operators in topological order, starting from the

sources
• represent as an adjacency matrix A

• Aij = 1 iff operator i is upstream neighbor of j

13

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

The time spent by an operator instance in deserialization, processing,
and serialization activities.

• excludes any time spent waiting on input or on output

• amounts to the time an operator instance runs for if executed in an
ideal setting

• when there is no waiting the useful time is equal to the observed time

14

Useful time Wu

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

True processing / output rates

Aggregated true processing / output rates

15

🤧😷🤒 Vasiliki Kalavri | Boston University 202116

Optimal parallelism per operator

🤧😷🤒 Vasiliki Kalavri | Boston University 202116

Optimal parallelism per operator

captures
upstream operators

🤧😷🤒 Vasiliki Kalavri | Boston University 202116

Optimal parallelism per operator

captures
upstream operators

Aggregated true
output rate of

operator oj , when oj
itself and all

upstream ops
are deployed with
optimal parallelism

🤧😷🤒 Vasiliki Kalavri | Boston University 202116

Optimal parallelism per operator

captures
upstream operators

Aggregated true
output rate of

operator oj , when oj
itself and all

upstream ops
are deployed with
optimal parallelism

current parallelism
of operator i

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

–Johnny Appleseed

“Type a quote here.”

17

Recursively computed as:

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

–Johnny Appleseed

“Type a quote here.”

17

Recursively computed as:
True output rate

of source j

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

–Johnny Appleseed

“Type a quote here.”

17

Recursively computed as:

It can be computed for all
operators by traversing the

dataflow from left to right once

True output rate
of source j

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Example

18

i=1
i=2

i=3

i=4

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Example

18

i=1
i=2

i=3

i=4

o1[λp] = 0
o1[λo] = 2000 r/s

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

o2[λp] = 1000 r/s
o2[λo] = 3800 r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

o3[λp] = 2930 r/s
o3[λo] = 600 r/s

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Example

18

i=1
i=2

i=3

i=4

o1[λp] = 0
o1[λo] = 2000 r/s

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

o2[λp] = 1000 r/s
o2[λo] = 3800 r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

o3[λp] = 2930 r/s
o3[λo] = 600 r/s

π2 = o1[λ*o] *
p2

o2[λp]
= 2000 *

2
1000

= 4

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Example

18

i=1
i=2

i=3

i=4

o1[λp] = 0
o1[λo] = 2000 r/s

λ1
o = 2000r/s
λ1

p = 450r/s

λ2
o = 1800r/s

λ2
p = 550r/s

o2[λp] = 1000 r/s
o2[λo] = 3800 r/s

λ1
p = 1000r/s

λ2
p = 950r/s

λ3
p = 980r/s

o3[λp] = 2930 r/s
o3[λo] = 600 r/s

π2 = o1[λ*o] *
p2

o2[λp]
= 2000 *

2
1000

= 4

π3 = o2[λ*o] *
p3

o3[λp]
= 7600 *

3
2930

≈ 7.78 → 8

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

DS2 model properties

If operator scaling is linear, then:

• no overshoot when scaling up
• no undershoot when scaling down

19

parallelism

initial rate

target

predict
ion

p0 p1

parallelism

initial rate
target

p0p1

prediction

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

DS2 model properties

If operator scaling is linear, then:

• no overshoot when scaling up
• no undershoot when scaling down

19

parallelism

initial rate

target

predict
ion

p0 p1

parallelism

initial rate
target

p0p1

prediction

x

x

p’

p’

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

DS2 model properties

If operator scaling is linear, then:

• no overshoot when scaling up
• no undershoot when scaling down

19

parallelism

initial rate

target

predict
ion

p0 p1

parallelism

initial rate
target

p0p1

Ideal rates act as un upper bound
when scaling up and as a lower bound
when scaling down:

DS2 will converge monotonically to
the target rate

prediction

p’

p’

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

DS2 model properties

If operator scaling is linear, then:

• no overshoot when scaling up
• no undershoot when scaling down

19

parallelism

initial rate

target

predict
ion

p0 p1

parallelism

initial rate
target

p0p1

Ideal rates act as un upper bound
when scaling up and as a lower bound
when scaling down:

DS2 will converge monotonically to
the target rate

prediction

actual

actual

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

parallelism

initial rate

target
actual

error

p0 p1

predict
ion

x
x
x

DS2 model properties

20

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

parallelism

initial rate

target
actual

p0 p1

x

new predictio
n

DS2 model properties

20

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

parallelism

initial rate

target
actual

p0 p1

x error

p1’

new predictio
n

Gradually minimizes error

DS2 model properties

20

🤧😷🤒 Vasiliki Kalavri | Boston University 202121

Scaling Manager Scaling Policy

Metrics
Repository

invoke

re-scale job

report metrics

monitor

pull metrics

decision

Timely dataflow
Apache Flink

Instrumented
stream processor

🤧😷🤒 Vasiliki Kalavri | Boston University 202122

Initially under-provisioned wordcount dataflow
Target rate: 16.700 rec/s

🤧😷🤒 Vasiliki Kalavri | Boston University 202122

Initially under-provisioned wordcount dataflow
Target rate: 16.700 rec/s

DS2 converges in a
single step for
both operators

🤧😷🤒 Vasiliki Kalavri | Boston University 202122

Initially under-provisioned wordcount dataflow
Target rate: 16.700 rec/s

DS2 converges in a
single step for
both operators

and converges in
60s, as soon as it
receives the
Heron metrics

🤧😷🤒 Vasiliki Kalavri | Boston University 202122

Initially under-provisioned wordcount dataflow
Target rate: 16.700 rec/s

DS2 converges in a
single step for
both operators

Dhalion scales
one operator at a
time, and needs
six steps in total

1

6

5

43
2and converges in

60s, as soon as it
receives the
Heron metrics

🤧😷🤒 Vasiliki Kalavri | Boston University 202122

Initially under-provisioned wordcount dataflow
Target rate: 16.700 rec/s

DS2 converges in a
single step for
both operators

and converges in 2000s

Dhalion scales
one operator at a
time, and needs
six steps in total

1

6

5

43
2and converges in

60s, as soon as it
receives the
Heron metrics

🤧😷🤒 Vasiliki Kalavri | Boston University 202122

Initially under-provisioned wordcount dataflow

+10 counts

+12 mappers

Target rate: 16.700 rec/s

DS2 converges in a
single step for
both operators

and converges in 2000s

Dhalion scales
one operator at a
time, and needs
six steps in total

1

6

5

43
2and converges in

60s, as soon as it
receives the
Heron metrics

🤧😷🤒 Vasiliki Kalavri | Boston University 202123

DS2 on Flink
Initially under-provisioned wordcount

Target rate: 2.000.000 rec/s, drops to half at 800s

🤧😷🤒 Vasiliki Kalavri | Boston University 202123

DS2 on Flink
Initially under-provisioned wordcount

Target rate: 2.000.000 rec/s, drops to half at 800s

DS2 converges in
2 steps for both
operators

1

2

🤧😷🤒 Vasiliki Kalavri | Boston University 202123

DS2 on Flink
Initially under-provisioned wordcount

Target rate: 2.000.000 rec/s, drops to half at 800s

DS2 reacts within
3s when the target

rate drops

DS2 converges in
2 steps for both
operators

1

2

🤧😷🤒 Vasiliki Kalavri | Boston University 202123

DS2 on Flink
Initially under-provisioned wordcount

Target rate: 2.000.000 rec/s, drops to half at 800s

DS2 reacts within
3s when the target

rate drops

DS2 converges in
2 steps for both
operators

1

2

Transient
underpovisioning

by 1 instance

24

DS2 scaling actions on Apache Flink wordcount

24

DS2 scaling actions on Apache Flink wordcount

Every reconfiguration
takes ~30s during which
the system is unavailable

24

DS2 scaling actions on Apache Flink wordcount

Every reconfiguration
takes ~30s during which
the system is unavailable

Re-configuration requires state migration with correctness guarantees.

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Elasticity mechanisms
Applying the reconfiguration

• Stop-and-restart - Dhalion (VLDB’17), DS2 (OSDI’18), Turbine (ICDE’20)

• Halt the whole computation, take a state snapshot of all operators, restart

• Partial pause and restart
• Temporarily block the affected dataflow subgraph only

• Pro-active replication
• Maintain state replicas in multiple nodes for reconfiguration purposes

25

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

b

Partial-pause-and-restart
FUGU(DEBS’14), Seep(SIGMOD’13)

1. Pause a’s upstream operators and start
buffering events in their input channels.

2. Process all remaining events in a’s input
buffers and then extract its state.

3. Move a’s state to b.

4. Operator b loads state and sends “restart”

signal to upstream operators.

26

a

Migrating state from a to b

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

b

Partial-pause-and-restart
FUGU(DEBS’14), Seep(SIGMOD’13)

1. Pause a’s upstream operators and start
buffering events in their input channels.

2. Process all remaining events in a’s input
buffers and then extract its state.

3. Move a’s state to b.

4. Operator b loads state and sends “restart”

signal to upstream operators.

26

a

block channels

and upstream operators

buffer

incoming records

Migrating state from a to b

1

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

b

Partial-pause-and-restart
FUGU(DEBS’14), Seep(SIGMOD’13)

1. Pause a’s upstream operators and start
buffering events in their input channels.

2. Process all remaining events in a’s input
buffers and then extract its state.

3. Move a’s state to b.

4. Operator b loads state and sends “restart”

signal to upstream operators.

26

a

block channels

and upstream operators

buffer

incoming records

Migrating state from a to b

1

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

b

Partial-pause-and-restart
FUGU(DEBS’14), Seep(SIGMOD’13)

1. Pause a’s upstream operators and start
buffering events in their input channels.

2. Process all remaining events in a’s input
buffers and then extract its state.

3. Move a’s state to b.

4. Operator b loads state and sends “restart”

signal to upstream operators.

26

a

block channels

and upstream operators

buffer

incoming records

Migrating state from a to b

1

2

3

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

b

Partial-pause-and-restart
FUGU(DEBS’14), Seep(SIGMOD’13)

1. Pause a’s upstream operators and start
buffering events in their input channels.

2. Process all remaining events in a’s input
buffers and then extract its state.

3. Move a’s state to b.

4. Operator b loads state and sends “restart”

signal to upstream operators.

26

a

block channels

and upstream operators

buffer

incoming records

Migrating state from a to b

1

2

3

restart
4

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move
and informs c1, c2.

2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream

instances pi

3. pi receives the pause and marks partitions as

stalled, stops consuming from its corresponding
input buffer, and sends an ack to c1

4. After c1 receives all acks:

a. s1 transfers the partitions to s2

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the

controller

Migrating state from c1 to c2

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move
and informs c1, c2.

2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream

instances pi

3. pi receives the pause and marks partitions as

stalled, stops consuming from its corresponding
input buffer, and sends an ack to c1

4. After c1 receives all acks:

a. s1 transfers the partitions to s2

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the

controller

Migrating state from c1 to c2

1

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move
and informs c1, c2.

2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream

instances pi

3. pi receives the pause and marks partitions as

stalled, stops consuming from its corresponding
input buffer, and sends an ack to c1

4. After c1 receives all acks:

a. s1 transfers the partitions to s2

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the

controller

Migrating state from c1 to c2

1

2.a

receive

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move
and informs c1, c2.

2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream

instances pi

3. pi receives the pause and marks partitions as

stalled, stops consuming from its corresponding
input buffer, and sends an ack to c1

4. After c1 receives all acks:

a. s1 transfers the partitions to s2

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the

controller

Migrating state from c1 to c2

1

2.a

2.b

receive

pause

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move
and informs c1, c2.

2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream

instances pi

3. pi receives the pause and marks partitions as

stalled, stops consuming from its corresponding
input buffer, and sends an ack to c1

4. After c1 receives all acks:

a. s1 transfers the partitions to s2

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the

controller

Migrating state from c1 to c2

1

2.a

2.b

3

receive

pause

ack

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move
and informs c1, c2.

2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream

instances pi

3. pi receives the pause and marks partitions as

stalled, stops consuming from its corresponding
input buffer, and sends an ack to c1

4. After c1 receives all acks:

a. s1 transfers the partitions to s2

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the

controller

Migrating state from c1 to c2

1

2.a

2.b

3
4.a

receive

pause

ack

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move
and informs c1, c2.

2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream

instances pi

3. pi receives the pause and marks partitions as

stalled, stops consuming from its corresponding
input buffer, and sends an ack to c1

4. After c1 receives all acks:

a. s1 transfers the partitions to s2

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the

controller

Migrating state from c1 to c2

1

2.a

2.b

3
4.a

4.b

receive

pause

ack

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Partial-pause-and-restart
FLUX (ICDE’03)

27

c1

c2

p1

p2

s1

s2

ctrl

1. The controller generates a list of partitions to move
and informs c1, c2.

2. Upon receiving a move request:

a. c2 queues a receive-request with s2

b. c1 broadcasts a pause to all upstream

instances pi

3. pi receives the pause and marks partitions as

stalled, stops consuming from its corresponding
input buffer, and sends an ack to c1

4. After c1 receives all acks:

a. s1 transfers the partitions to s2

b. s2 notifies c2

c. c2 sends a restart signal upstream and to the

controller

Migrating state from c1 to c2

1

2.a

2.b

3
4.a

4.b

4.c
receive

pause

ack
restart

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Pro-active Replication
ChronoStream (ICDE’15), Rhino (SIGMOD’20)

28

Nsrc

1 2 3 4

5 6 7 8

primary

backup

Ndest

5 6 7 8

1 2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and

the slice progress. In the meantime, Nsrc keeps
processing events destined for slice #1.

3. The leader notifies upstream operators to re-
play events according to the progress metric
provided by Ndest.

4. Upstream nodes receive the message and re-
route events to Ndest.

5. The leader notifies Nsrc that the transfer is
complete.

6. Nsrc consumes remaining data in its buffers
and moves slice #1 to the backup group.

Nup

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Pro-active Replication
ChronoStream (ICDE’15), Rhino (SIGMOD’20)

28

Nsrc

1 2 3 4

5 6 7 8

primary

backup

Ndest

5 6 7 8

1 2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and

the slice progress. In the meantime, Nsrc keeps
processing events destined for slice #1.

3. The leader notifies upstream operators to re-
play events according to the progress metric
provided by Ndest.

4. Upstream nodes receive the message and re-
route events to Ndest.

5. The leader notifies Nsrc that the transfer is
complete.

6. Nsrc consumes remaining data in its buffers
and moves slice #1 to the backup group.

Nup

1 load #1

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Pro-active Replication
ChronoStream (ICDE’15), Rhino (SIGMOD’20)

28

Nsrc

1 2 3 4

5 6 7 8

primary

backup

Ndest

5 6 7 8

2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and

the slice progress. In the meantime, Nsrc keeps
processing events destined for slice #1.

3. The leader notifies upstream operators to re-
play events according to the progress metric
provided by Ndest.

4. Upstream nodes receive the message and re-
route events to Ndest.

5. The leader notifies Nsrc that the transfer is
complete.

6. Nsrc consumes remaining data in its buffers
and moves slice #1 to the backup group.

Nup

1 load #1

1

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Pro-active Replication
ChronoStream (ICDE’15), Rhino (SIGMOD’20)

28

Nsrc

1 2 3 4

5 6 7 8

primary

backup

Ndest

5 6 7 8

2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and

the slice progress. In the meantime, Nsrc keeps
processing events destined for slice #1.

3. The leader notifies upstream operators to re-
play events according to the progress metric
provided by Ndest.

4. Upstream nodes receive the message and re-
route events to Ndest.

5. The leader notifies Nsrc that the transfer is
complete.

6. Nsrc consumes remaining data in its buffers
and moves slice #1 to the backup group.

Nup

1 load #1

1

p1 2

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Pro-active Replication
ChronoStream (ICDE’15), Rhino (SIGMOD’20)

28

Nsrc

1 2 3 4

5 6 7 8

primary

backup

Ndest

5 6 7 8

2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and

the slice progress. In the meantime, Nsrc keeps
processing events destined for slice #1.

3. The leader notifies upstream operators to re-
play events according to the progress metric
provided by Ndest.

4. Upstream nodes receive the message and re-
route events to Ndest.

5. The leader notifies Nsrc that the transfer is
complete.

6. Nsrc consumes remaining data in its buffers
and moves slice #1 to the backup group.

Nup

1 load #1

1

p1 2

p1 3

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Pro-active Replication
ChronoStream (ICDE’15), Rhino (SIGMOD’20)

28

Nsrc

1 2 3 4

5 6 7 8

primary

backup

Ndest

5 6 7 8

2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and

the slice progress. In the meantime, Nsrc keeps
processing events destined for slice #1.

3. The leader notifies upstream operators to re-
play events according to the progress metric
provided by Ndest.

4. Upstream nodes receive the message and re-
route events to Ndest.

5. The leader notifies Nsrc that the transfer is
complete.

6. Nsrc consumes remaining data in its buffers
and moves slice #1 to the backup group.

Nup

1 load #1

1

p1 2

p1 3

4

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Pro-active Replication
ChronoStream (ICDE’15), Rhino (SIGMOD’20)

28

Nsrc

1 2 3 4

5 6 7 8

primary

backup

Ndest

5 6 7 8

2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and

the slice progress. In the meantime, Nsrc keeps
processing events destined for slice #1.

3. The leader notifies upstream operators to re-
play events according to the progress metric
provided by Ndest.

4. Upstream nodes receive the message and re-
route events to Ndest.

5. The leader notifies Nsrc that the transfer is
complete.

6. Nsrc consumes remaining data in its buffers
and moves slice #1 to the backup group.

Nup

1 load #1

1

p1 2

p1 3

4

5

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Pro-active Replication
ChronoStream (ICDE’15), Rhino (SIGMOD’20)

28

Nsrc

2 3 4

5 6 7 8

primary

backup

Ndest

5 6 7 8

2 3 4

leader

1. The leader instructs Ndest to load slice #1.

2. Ndest loads slice #1 and sends back ack and

the slice progress. In the meantime, Nsrc keeps
processing events destined for slice #1.

3. The leader notifies upstream operators to re-
play events according to the progress metric
provided by Ndest.

4. Upstream nodes receive the message and re-
route events to Ndest.

5. The leader notifies Nsrc that the transfer is
complete.

6. Nsrc consumes remaining data in its buffers
and moves slice #1 to the backup group.

Nup

1 load #1

1

p1 2

p1 3

4

5

1

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

State transfer strategies

All-at-once
• Move state to be migrated in one operation

• High latency during migration if the state is large

Progressive
• Move state to be migrated in smaller pieces, e.g. key-by-key

• It enables interleaving state transfer with processing

• Migration duration might increase

29

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Progressive State migration
Megaphone (VLDB’19)

30

S<key, value, time>
data input

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Progressive State migration
Megaphone (VLDB’19)

30

S<key, value, time>
data input

H S

<key, value, time>

<key, worker, time>

data input

control input

shared state

Each stateful operator is augmented with a
helper upstream operator which accepts a
control stream as input

Control inputs have timestamps and
participate in the progress protocol (e.g.
advance and propagate watermarks)

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Progressive State migration
Megaphone (VLDB’19)

30

S<key, value, time>
data input

H S

<key, value, time>

<key, worker, time>

data input

control input

shared state

Helper operators are
hidden from the

application developer

Each stateful operator is augmented with a
helper upstream operator which accepts a
control stream as input

Control inputs have timestamps and
participate in the progress protocol (e.g.
advance and propagate watermarks)

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Progressive State migration
Megaphone (VLDB’19)

31

H

H

H

control input

Helper operators:

• buffer data that cannot be safely routed yet
and configuration commands that cannot
yet be applied

• check the frontier (watermark) at the
output of the stateful operator to ensure
only complete state is migrated

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Progressive State migration
Megaphone (VLDB’19)

31

H

H

H

control input

Helper operators:

• buffer data that cannot be safely routed yet
and configuration commands that cannot
yet be applied

• check the frontier (watermark) at the
output of the stateful operator to ensure
only complete state is migrated

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Progressive State migration
Megaphone (VLDB’19)

31

H

H

H

get state

control input

Helper operators:

• buffer data that cannot be safely routed yet
and configuration commands that cannot
yet be applied

• check the frontier (watermark) at the
output of the stateful operator to ensure
only complete state is migrated

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Progressive State migration
Megaphone (VLDB’19)

31

H

H

H

transfer state

control input

Helper operators:

• buffer data that cannot be safely routed yet
and configuration commands that cannot
yet be applied

• check the frontier (watermark) at the
output of the stateful operator to ensure
only complete state is migrated

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Progressive State migration
Megaphone (VLDB’19)

31

H

H

H

control input

Helper operators:

• buffer data that cannot be safely routed yet
and configuration commands that cannot
yet be applied

• check the frontier (watermark) at the
output of the stateful operator to ensure
only complete state is migrated

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Lecture references

• Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dimitrova,
Matthew Forshaw, and Timothy Roscoe. Three steps is all you need:
fast, accurate, automatic scaling decisions for distributed streaming
dataflows. (OSDI’18).

• Moritz Hoffmann, Andrea Lattuada, Frank McSherry, Vasiliki Kalavri, John
Liagouris, Timothy Roscoe. Megaphone: Latency-conscious state
migration for distributed streaming dataflows. (VLDB 2019).

32

https://arxiv.org/search/cs?searchtype=author&query=Hoffmann%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Lattuada%2C+A
https://arxiv.org/search/cs?searchtype=author&query=McSherry%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Kalavri%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Liagouris%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Liagouris%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Roscoe%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Hoffmann%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Lattuada%2C+A
https://arxiv.org/search/cs?searchtype=author&query=McSherry%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Kalavri%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Liagouris%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Liagouris%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Roscoe%2C+T

