CS 591 K1: Data Stream Processing and Analytics

Fundamentals of stream processing Spring 2021

Vasiliki (Vasia) Kalavri vkalavri@bu.edu

What is a stream?

• In traditional data processing applications, we know the entire dataset in advance, e.g. tables stored in a database.

A data stream is a data set that is produced incrementally over time, rather than being available in full before its processing begins.

- Data streams are high-volume, real-time data that might be unbounded
 - we cannot store the entire stream in an accessible way
 - we have to process stream elements on-the-fly using limited memory

Properties of data streams

- They arrive continuously instead of being available a-priori.
- They bear an arrival and/or a generation timestamp.
- They are produced by external sources, i.e. the DSMS has no control over their arrival order or the data rate.
- They have **unknown**, possibly **unbounded length**, i.e. the DSMS does not know when the stream *ends*.

Data Management Approaches

Data Warehouse

- complex, offline analysis
- large and relatively static and historical data
- batched updates during downtimes, e.g. every night

static data

Database Management System

 ad-hoc queries, data manipulation tasks

analytics

• insertions, updates, deletions of single row or groups of rows

Streaming Data Warehouse

- low-latency materialized view updates
- pre-aggregated, pre-processed streams and historical data

SDW DSMS

storage

streaming data

Data Stream Management System

- continuous queries
- sequential data access, high-rate append-only updates

DBMS vs. DSMS

	DBMS	DSMS
Data	persistent relations	streams
Data Access	random	sequential, single-pass
Updates	arbitrary	append-only
Update rates	relatively low	high, bursty
Processing Model	query-driven / pull-based	data-driven / push-based
Queries	ad-hoc	continuous
Latency	relatively high	low

Traditional DW vs. SDW

	Traditional DW	SDW
Update Frequency	low	high
Update propagation	synchronized	asynchronous
Data	historical	recent and historical
ETL process	complex	fast and light-weight

ETL: Extract-Transform-Load e.g. unzipping compressed files, data cleaning and standardization

The 8 Requirements of Real-Time Stream Processing

Michael Stonebraker

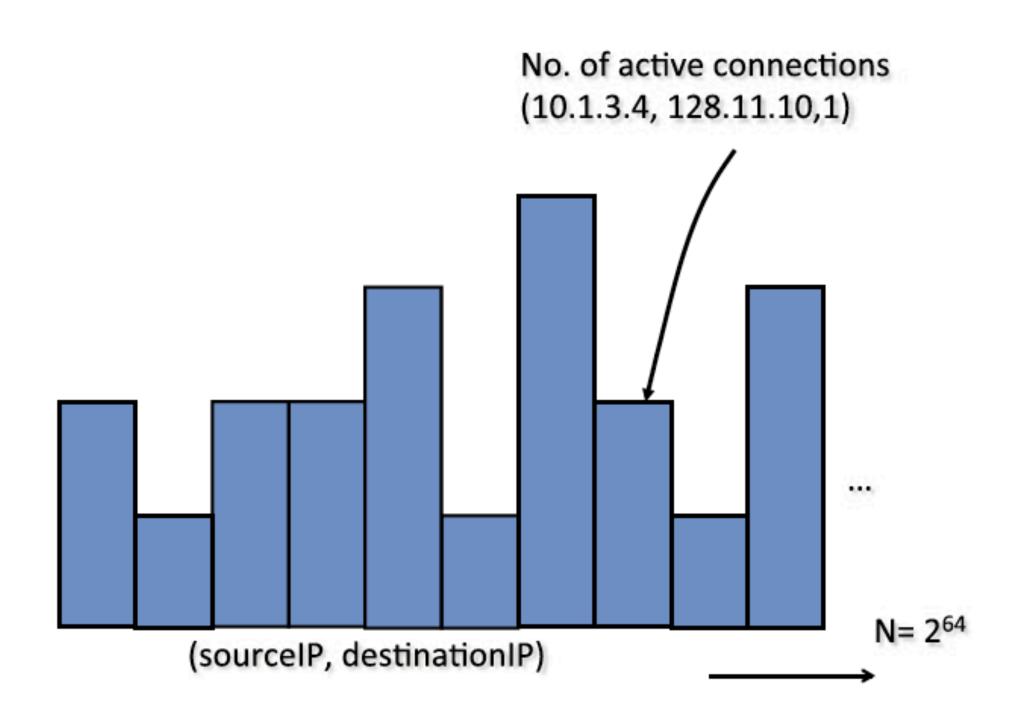
Uğur Çetintemel

Stan Zdonik

- 1. Process events online without storing them
- 2. Support a high-level language (e.g. StreamSQL)
- 3. Handle missing, out-of-order, delayed data
- 4. Guarantee deterministic (on replay) and correct results (on recovery)
- 5. Combine batch (historical) and stream processing
- 6. Ensure availability despite failures
- 7. Support distribution and automatic elasticity
- 8. Offer low-latency

Basic Stream Models

A stream can be viewed as a massive, dynamic, one-dimensional vector A[I...N].



up-to-date frequencies for specific (source, destination) pairs observed in IP connections that are currently active

The size N of the streaming vector is defined as the product of the attribute domain size(s).

Note that N might be unknown.

The vector is updated by a continuous stream of events where the j_{th} update has the general form (k, c[j]) and modifies the k_{th} entry of A with the operation $A[k] \leftarrow A[k] + c[j]$.

Time-Series Model: The j_{th} update is (j, A[j]) and updates arrive in increasing order of j, i.e. we observe the entries of A by increasing index.

This approach can model time-series data streams:

- a sequence of measurements from a temperature sensor
- the volume of NASDAQ stock trades over time

The time-series model poses a severe limitation on the stream: updates cannot change past entries in A.

Useful in theory for the development of streaming algorithms With limited practical value in distributed, real-world settings **Cash-Register Model:** In this model, multiple updates can *increment* an entry A[j]: In the j_{th} update (k, c[j]), it must hold that $c[j] \ge 0$.

This can model insertion-only streams:

- monitoring the total packets exchanged between two IP addresses
- the collection of IP addresses accessing a web server

With some practical value for use-cases with append-only data It preserves all history without the option to discard old events **Turnstile Model**: The j_{th} update (k, c[j]), can be either positive or negative. Events can be continuously inserted and deleted from the stream.

It can model fully dynamic situations:

 Monitoring active IP network connections is a Turnstile stream, as connections can be initiated or terminated between any pair of addresses at any point in the stream.

> It is the most general model Hard to develop space-efficient and time-efficient algorithms

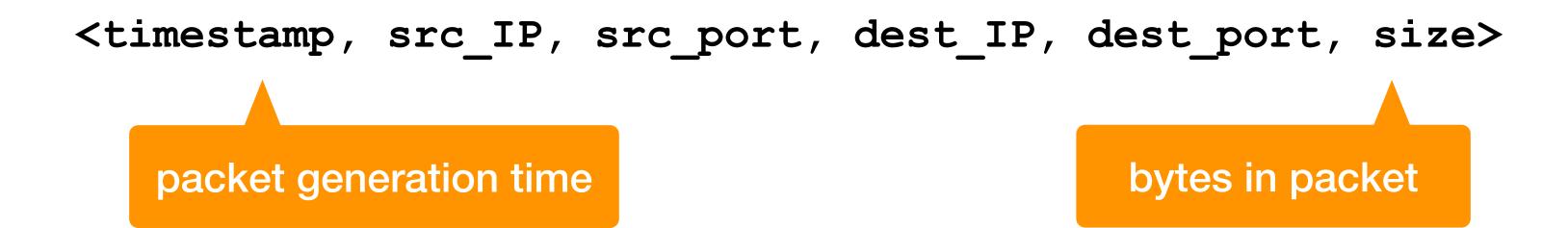
Relational Streaming Model

Streams as evolving relations

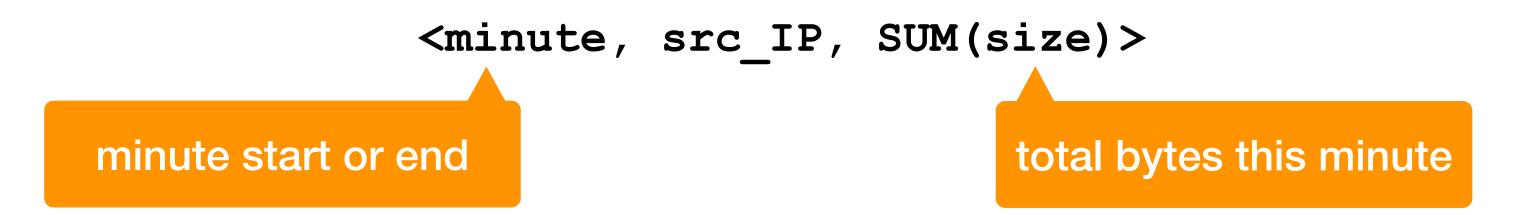
- A stream is interpreted as describing a changing relation.
- Stream elements bear a **valid timestamp**, V_s, after which they are considered valid and they can contribute to the result.
 - alternatively, events can have validity intervals.
- The contents of the relation at time t are all events with $V_s \leq t$.

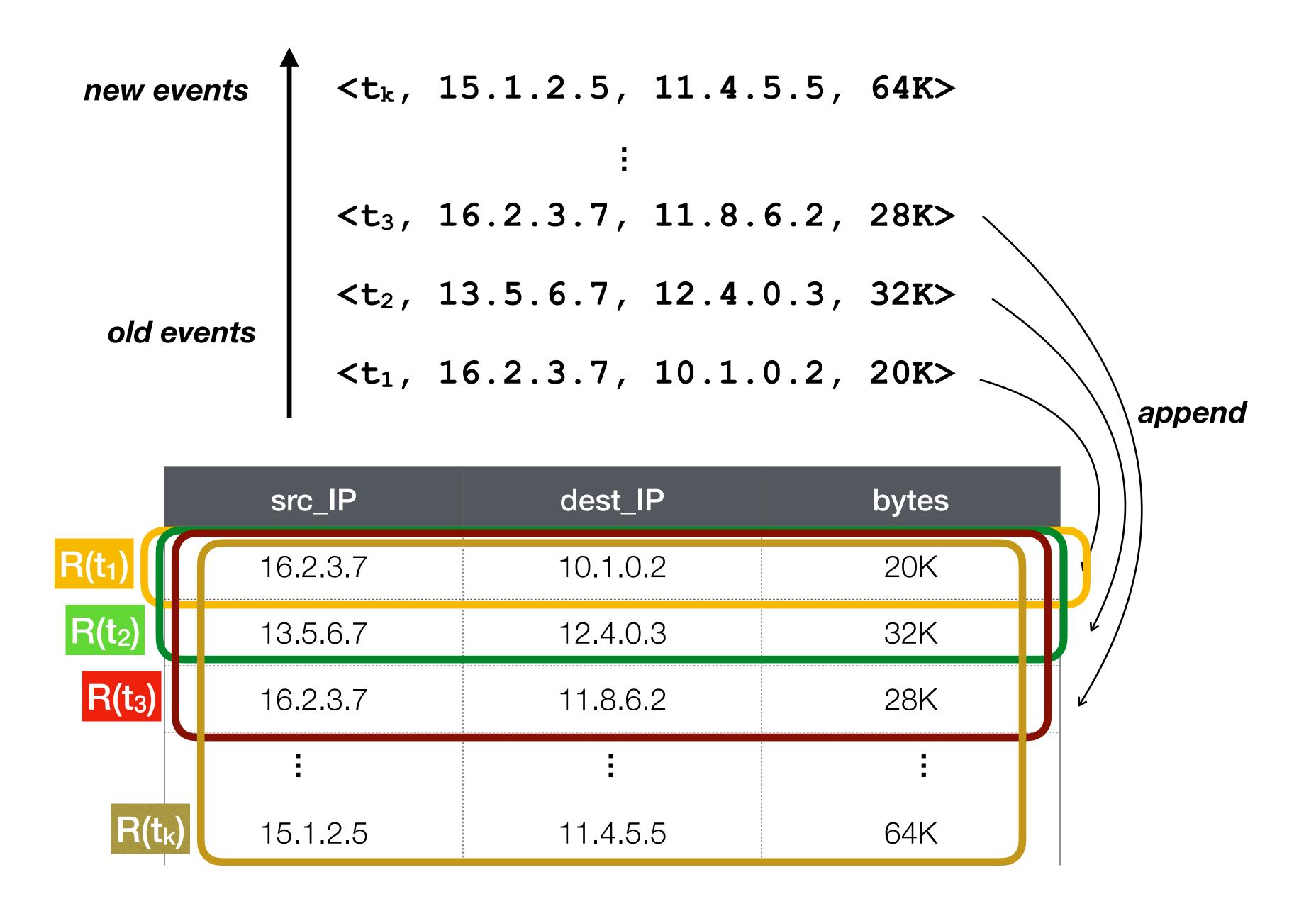
Types of streams

- Base stream: produced by an external source
 - e.g. TCP packet stream

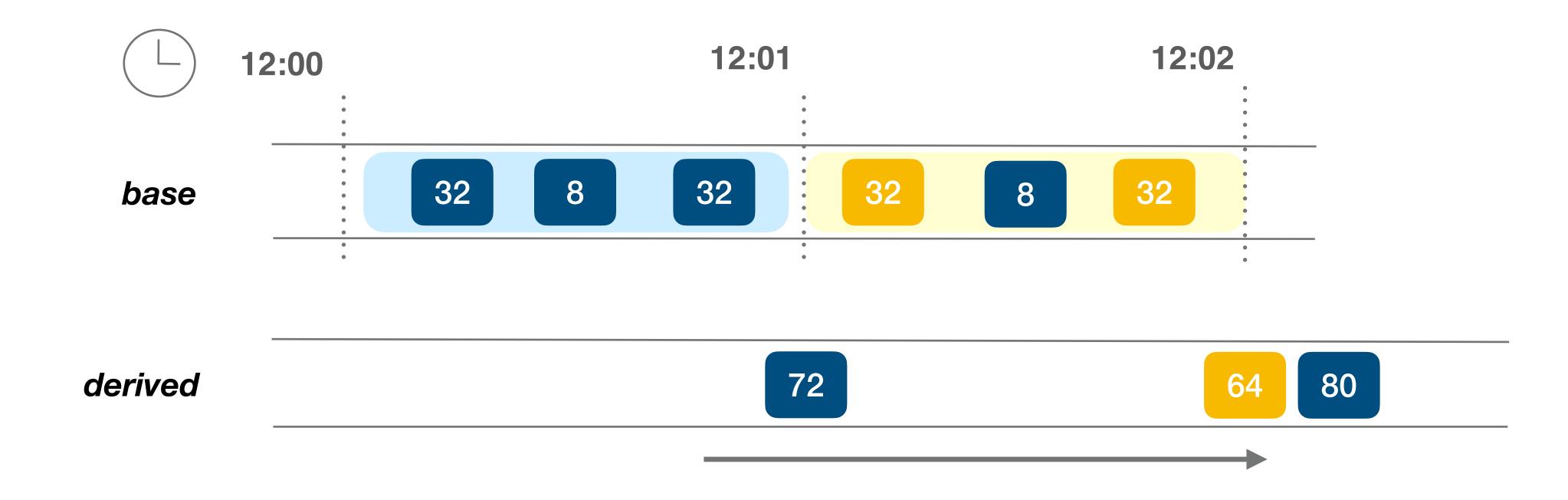


• **Derived stream**: produced by a continuous query and its operators, e.g. total traffic from a source every minute





- Base streams are typically append-only
 - previously arrived items are not modified
- Derived streams may not be append-only
 - what if packets arrive late?
 - we might need to revise the computed total traffic, i.e. output stream might contain updates to previously emitted items



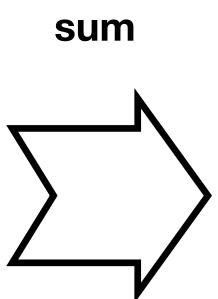
- Base streams update relation tables and derived streams update materialized views.
- An **operator** outputs event streams that describe the *changing view* computed over the input stream according to the relational semantics of the operator.

src	dest	bytes		src	dest	total
1	2	20K	sum	1	2	20K
			Y			

- Base streams update relation tables and derived streams update materialized views.
- An **operator** outputs event streams that describe the *changing view* computed over the input stream according to the relational semantics of the operator.

src	dest	bytes		src	dest	total
1	2	20K	sum	1	2	20K
2	5	32K		2	5	32K

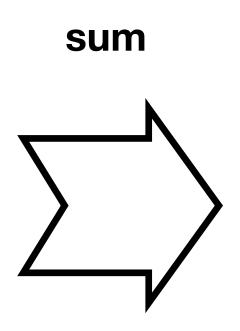
- Base streams update relation tables and derived streams update materialized views.
- An **operator** outputs event streams that describe the *changing view* computed over the input stream according to the relational semantics of the operator.



src	dest	total
1	2	48K
2	5	32K

- Base streams update relation tables and derived streams update materialized views.
- An **operator** outputs event streams that describe the *changing view* computed over the input stream according to the relational semantics of the operator.

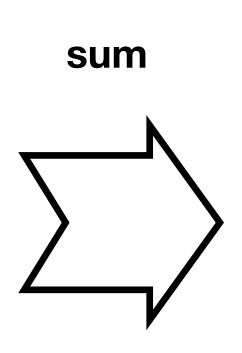
src	dest	bytes
1	2	20K
2	5	32K
1	2	28K
2	3	32K



src	dest	total
1	2	48K
2	5	32K
2	3	32K

- Base streams update relation tables and derived streams update materialized views.
- An **operator** outputs event streams that describe the *changing view* computed over the input stream according to the relational semantics of the operator.

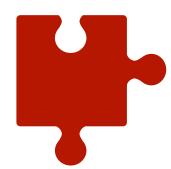
src	dest	bytes
1	2	20K
2	5	32K
1	2	28K
2	3	32K
2	5	64K



src	dest	total
1	2	48K
2	5	96K
2	3	32K

Stream representation matters

Consider streams of sensor readings from a temperature probe



How would you compute the average temperature over all sensors if the probe emits:

- 1. a reading of the current temperature every 1s?
- 2. the difference from the previous reading every 1s?
- 3. a reading of the current temperature only if it differs significantly from the last emitted reading?

Stream denotation

An abstract interpretation of the stream as a mathematical structure, e.g.

a sequence of (finite) relation states over a common schema R: $[r_1(R), r_2(R), ...,]$, where the individual relations are unordered sets.

src	dest	bytes
1	2	20K
2	5	32K
1	2	28K

{(1, 2, 20K), (2, 5, 32K), (1, 2, 28K)}

Such a relation sequence could be represented in various ways:

- as the concatenation of serializations of the relations.
- as a list of **tuple-index pairs**, where $\langle t, j \rangle$ indicates that $t \in r_j$
- as a serialization of r_1 followed by a series of **delta tuples** that indicate updates to make to obtain r_2 , r_3 , ..., etc.
- as a replacement sequence where some attribute A denotes a key and an arriving tuple t replaces any existing tuple with the same t(A) value to form a new relation state.
- as a sliding window with length k in which each subsequence of k tuples represents a relation state in the sequence.

R1 (t=1)

src	dest	bytes
1	2	20K
2	5	32K

R2 (t=2)

src	dest	bytes
1	2	20K
2	5	32K
2	3	28K

R3 (t=3)

src	dest	bytes
2	5	32K
2	3	28K
1	2	28K

concatenation

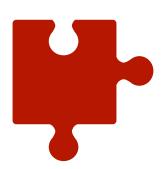
(1, 2, 20K), (2, 5, 32K) EOR (1, 2, 20K), (2, 5, 32K), (2, 3, 28K) EOR (2, 5, 32K), (2, 3, 28K), (1, 2, 28K) EOR

tuple-index pairs

<(1, 2, 20K), 1>, <(2, 5, 32K), 2>, <(1, 2, 20K), 2>, <(2, 5, 32K), 1>, <(2, 3, 28K), 3>, <(2, 5, 32K), 3>, <(2, 3, 28K), 2>, <(1, 2, 28K), 3>, ...

delta tuples

+(1, 2, 20K), +(2, 5, 32K) EOR +(2, 3, 28K) EOR -(1, 2, 20K), +(1, 2, 28K) EOR



What are the advantages and disadvantages of each representation?

Reconstitution functions

Insert (append-only): The reconstitution function **ins** starts with an empty bag and then inserts each successive stream item:

- ins([]) = Ø
- ins(P:i) = insert(i, ins(P)), where P:i denotes the sequence P extended by item i.

Insert-Unique (distinct): The reconstitution function ins_u checks for duplicates:

- ins_u(□) = Ø
- ins_u(P:i) = if i ∉ ins_u(P) then insert(i, ins_u(P)) else ins_u(P).

Insert-Replace: If the stream has a *key*, the reconstitution function **ins_r** guarantees that only the most recent item with a given key is included:

- ins_r([]) = Ø
- ins_r(P:i) = insert(i, {j | j ∈ ins_r(P) ^ j.A ≠ i.A}).

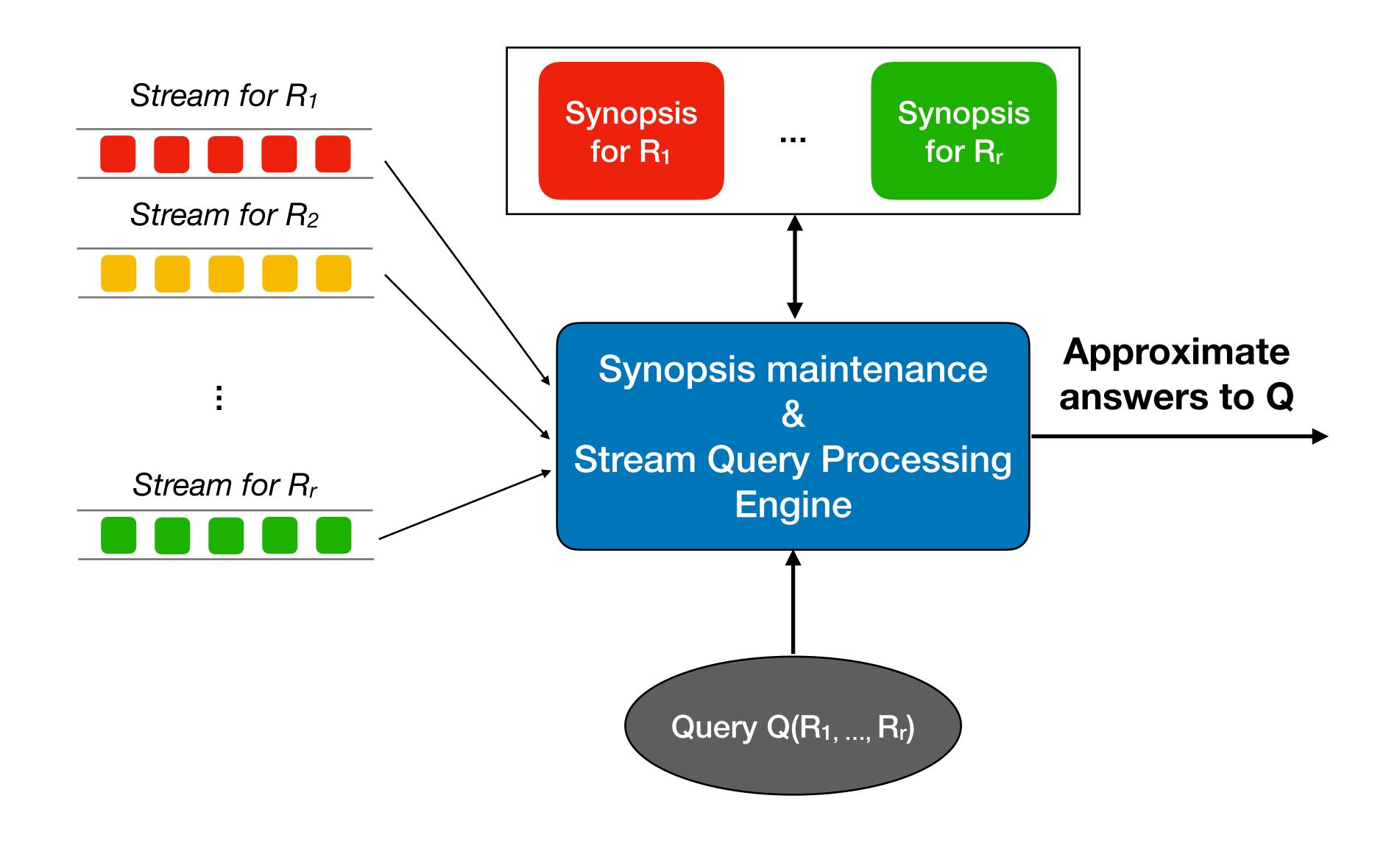
Query processing challenges

- Memory requirements: we cannot store the whole stream history.
- Data rate: we cannot afford to continuously update indexes and materialized views for high rates.
- Incremental computation: do we recompute the result from scratch whenever a new record is appended to the stream table?

Synopses: Maintain summaries of streaming data instead of the complete history.

Stream synopses requirements

- Single-pass: synopses can be easily updated with a single pass over streaming tuples in their arrival order
- Small space: memory footprint poly-logarithmic in the stream size
- Low time: fast update and query times
- Delete-proof: synopses can handle both insertions and deletions in an update stream
- Composable: synopses can be built independently on different parts of the stream and composed/merged to obtain the synopsis of the whole stream



- The average of a stream on integers?
- The number of distinct users who have visited a website?
- The top-10 queries inserted in a search engine?
- The connected components of accounts in a stream of financial transactions?

Issues with synopses

- They are *lossy* compressions of streams
 - trade-off memory footprint for accuracy
- Query results are approximate with either deterministic or probabilistic error bounds
- There is no *universal* synopsis solution
- They are purpose-built and query-specific
 - different synopsis to count distinct elements than to keep track of top-K events

Dataflow stream processing

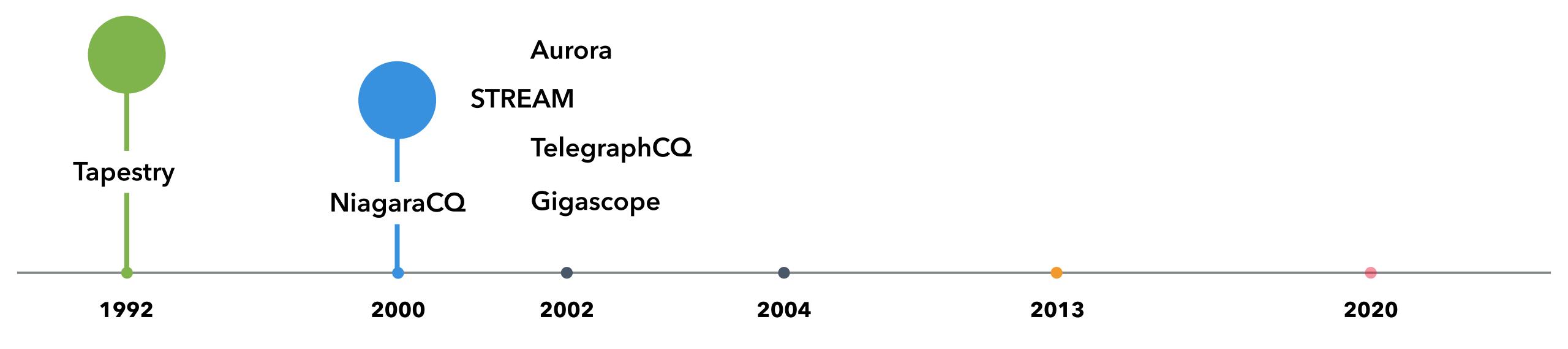
Continuous Queries over Append-Only Databases

SIGIMOD 192 Do

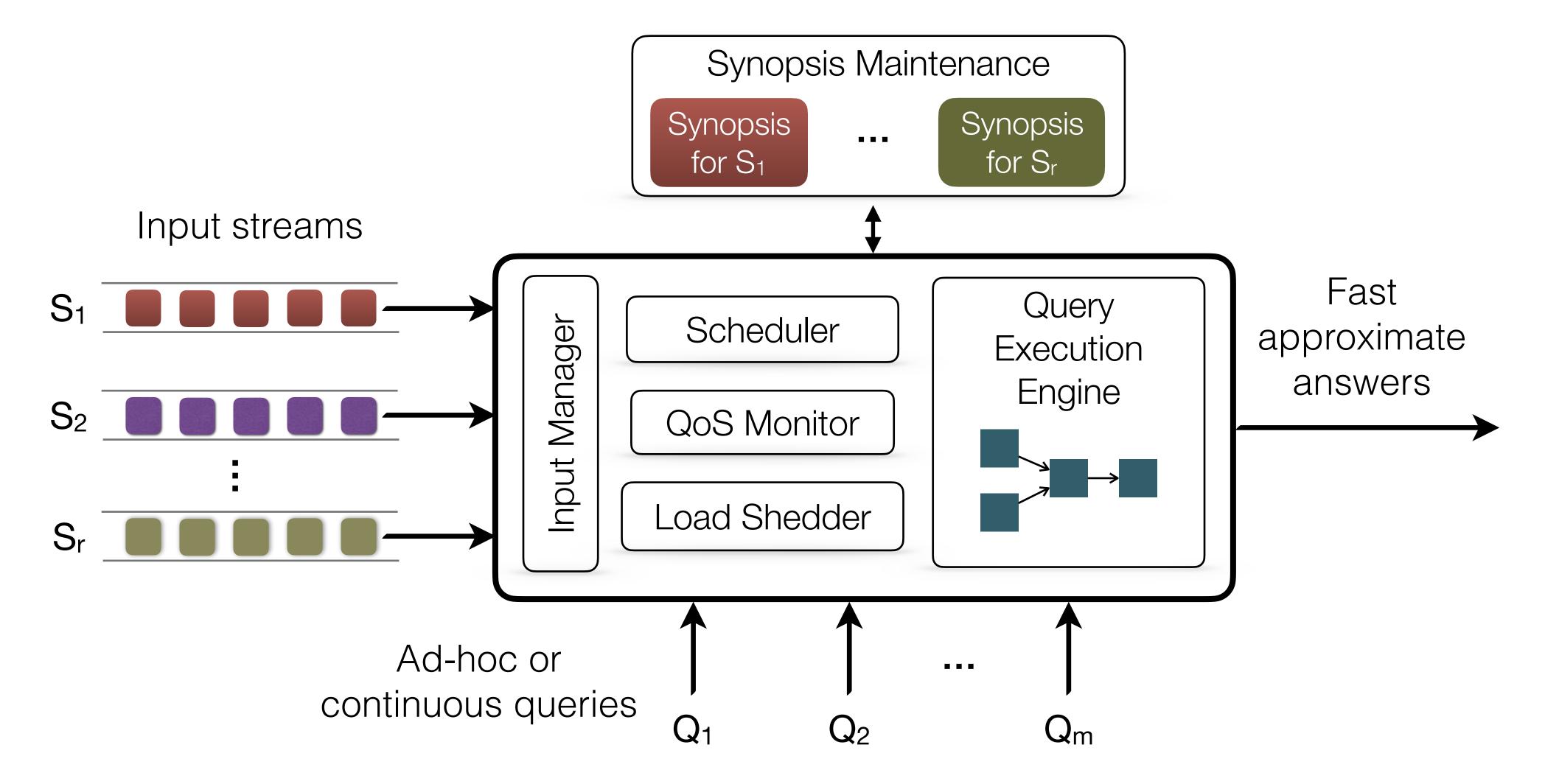
Douglas Terry, David Goldberg, David Nichols, and Brian Oki

[... A new class of queries, **continuous queries**, are similar to conventional database queries, except that they are issued once and henceforth run "continually" over the database ...]

Data Stream Management Systems



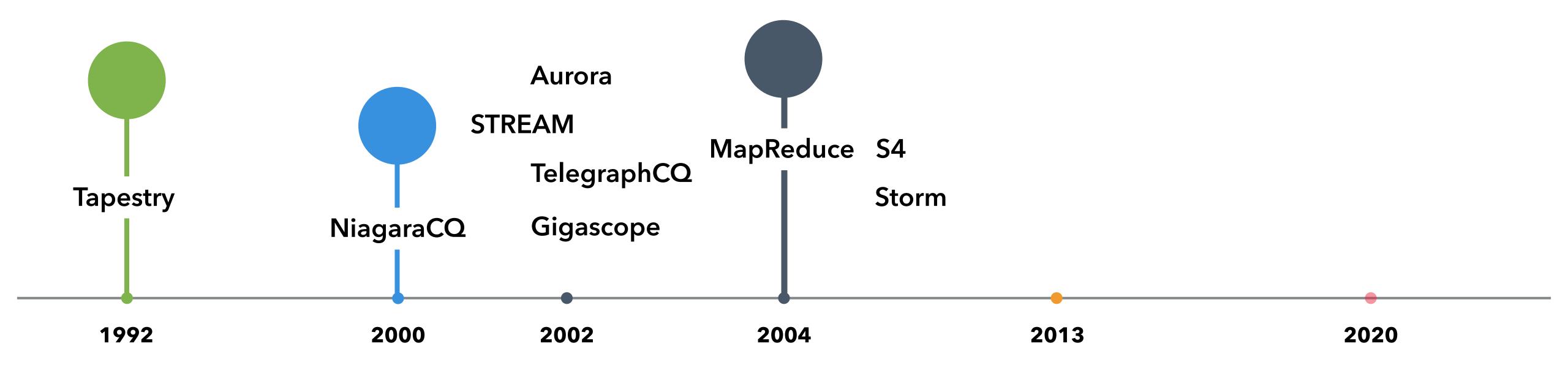
DSMS architecture



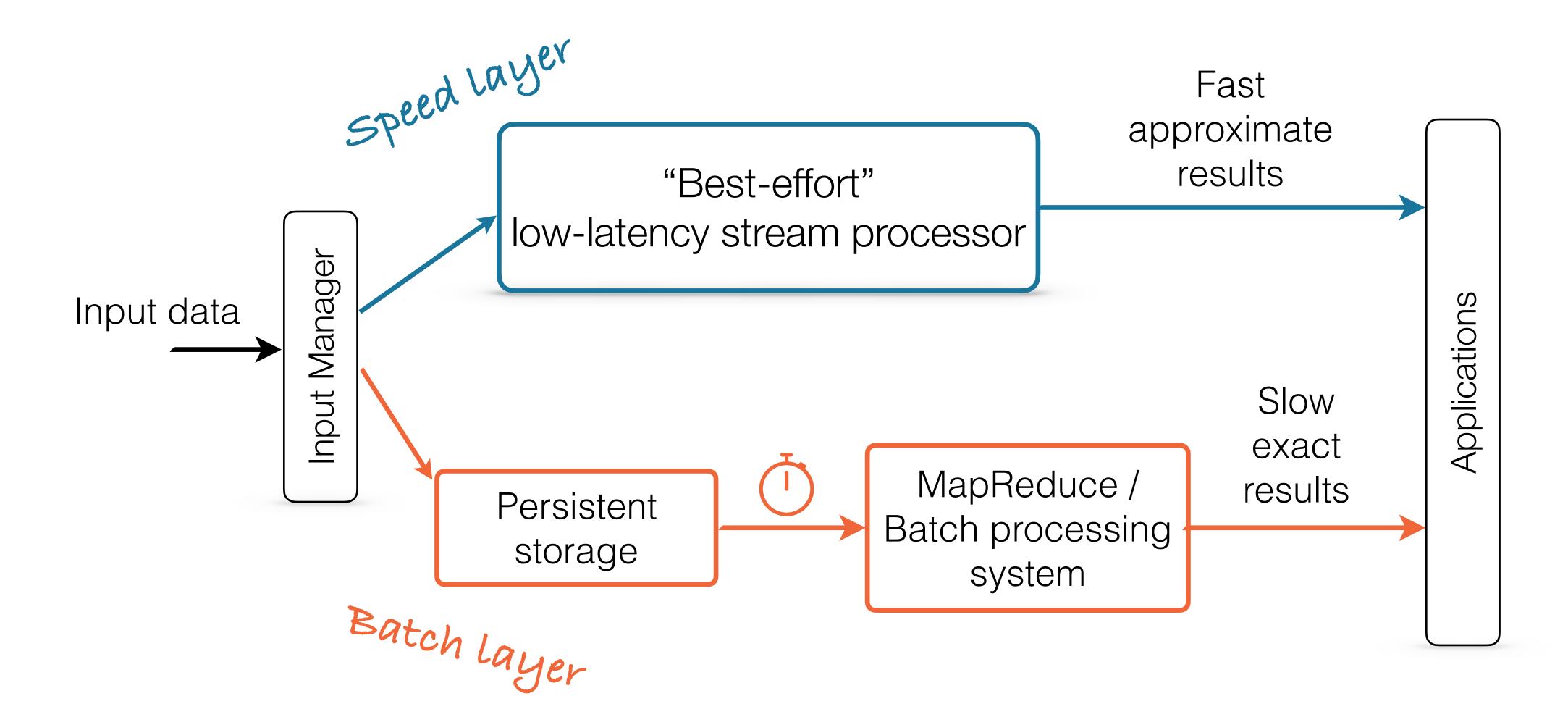
Data Stream Management Systems

representations
operator semantics
event time & progress
synopses & sketches

load management high availability scheduling



λ-architecture

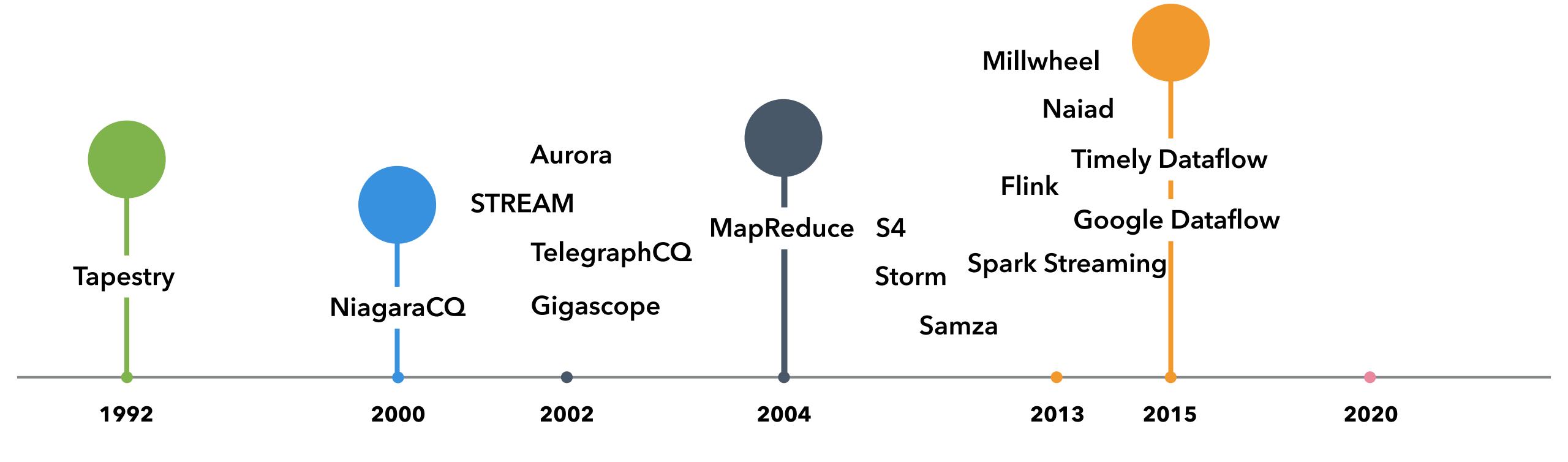


Data Stream Management Systems

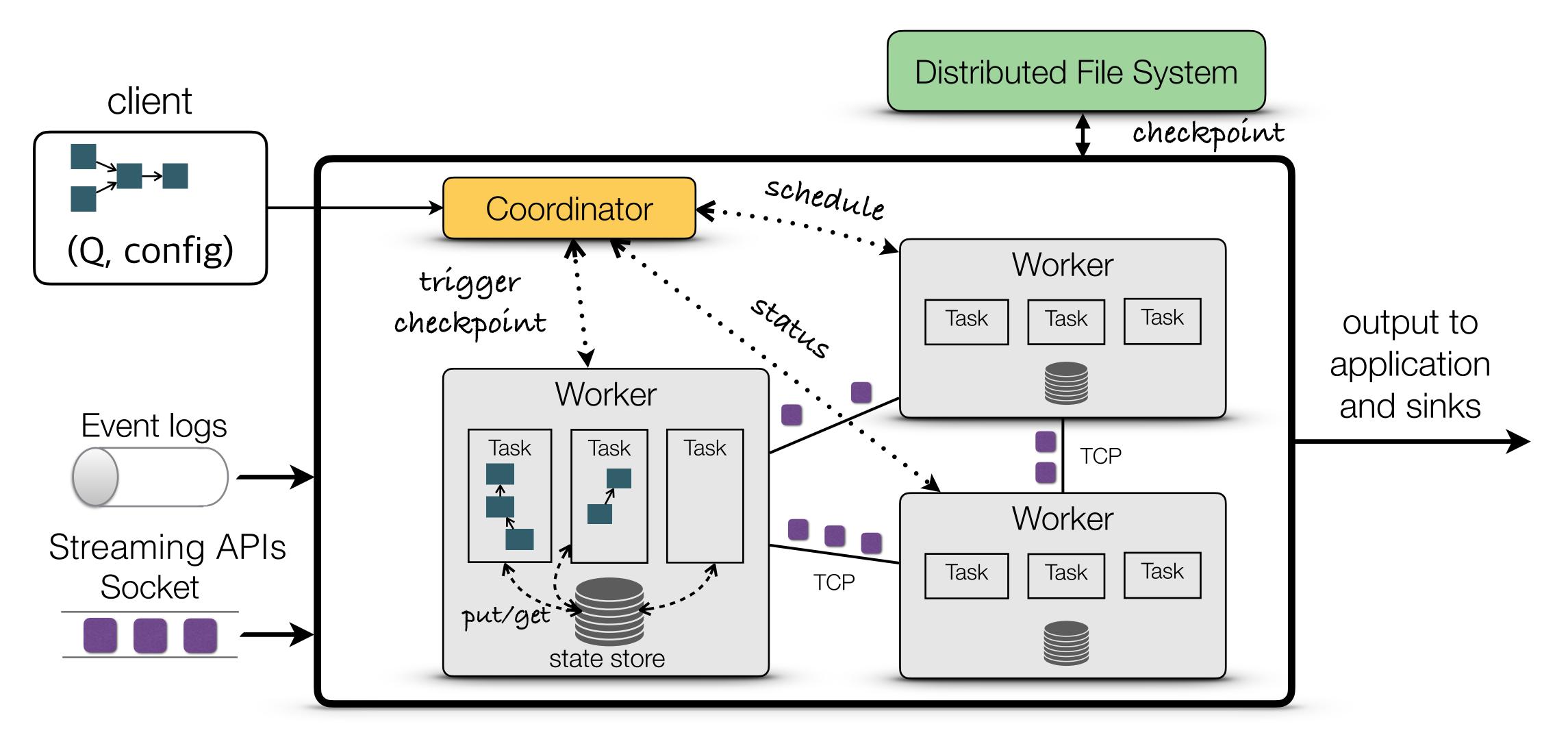
Distributed Dataflow Systems

representations
operator semantics
event time & progress
synopses & sketches

load management high availability scheduling

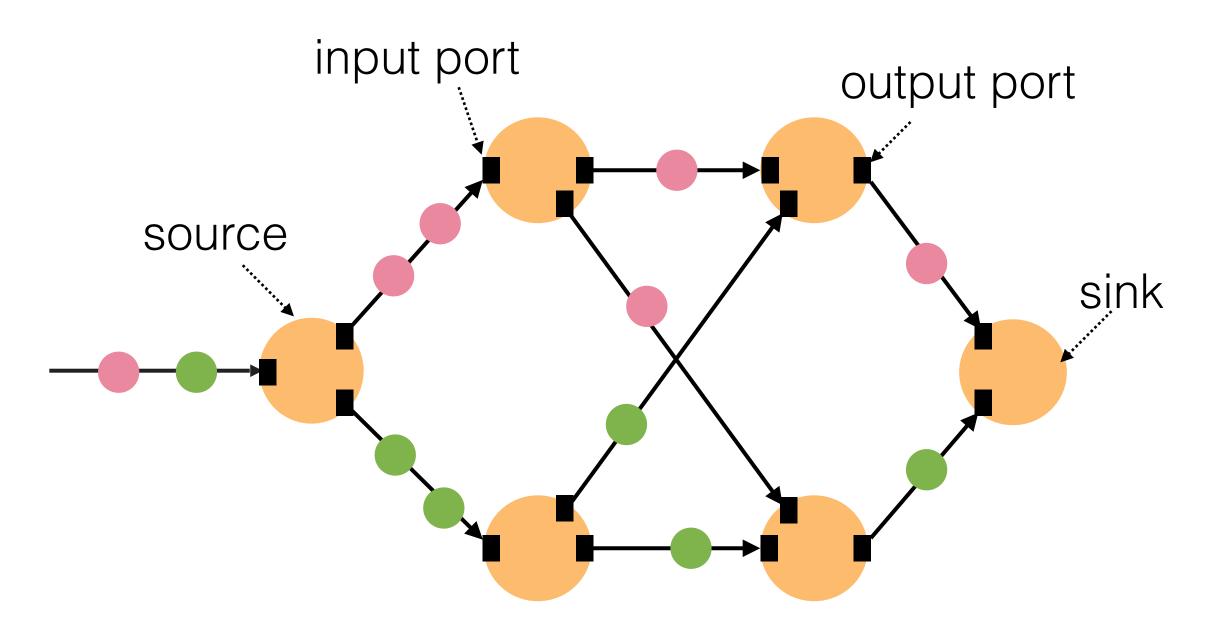


DDS architecture



A series of transformations on streams in Stream SQL, Scala, Python, Rust, Java...

dataflow graph



Dataflow graph

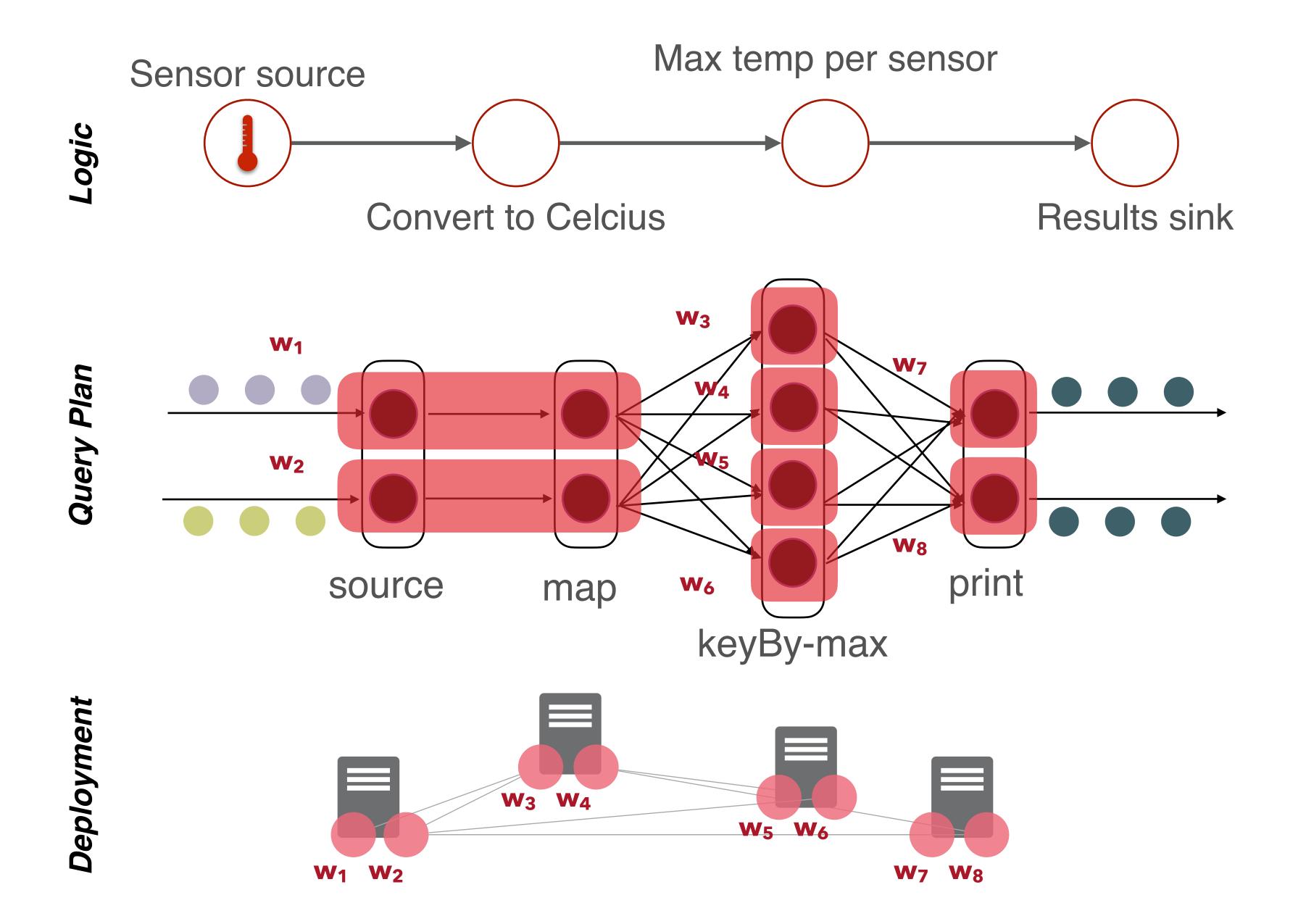
- operators are nodes, data channels are edges
- channels have FIFO semantics
- streams of data elements flow continuously along edges

Operators

- receive one or more input streams
- perform tuple-at-a-time, window, logic, pattern matching transformations
- output one or more streams of possibly different type

Example: Apache Flink DataStream API

```
Sensor measurement
case class Reading(id: String, time: Long, temp: Double)
                                                                      events
object MaxSensorReadings {
  def main(args: Array[String]) {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
                                                               Ingest the sensor
    val sensorData = env.addSource(new SensorSource)
                                                              measurement events
    val maxTemp = sensorData
      map(r \Rightarrow Reading(r.id, r.time, (r.temp-32)*(5.0/9.0)))
      .keyBy(_.id)
                                                                      Transform the temperatures
      .max("temp")
                                                                             to Celcius
                        Continuously compute the
    maxTemp.print()
                       max temperature seen so far
    env.execute("Compute max sensor temperature")
```



Data Stream Management Systems

2000

2002

1992

Distributed Dataflow Systems

data parallelism state management representations toad management exactly-once fault-tolerance operator semantics high availability event time & progress iterations UDES scheduling synopses & sketches general-purpose languages Millwheel Naiad Aurora **Timely Dataflow** Flink **STREAM Google Dataflow** MapReduce S4 TelegraphCQ **Spark Streaming** Storm **Tapestry** Gigascope NiagaraCQ Samza

2020

2004

2013

2015

Vintage vs. modern

	DSMS	Distributed Dataflow
Input	in-order	out-of-order
Results	exact or approximate	exact
Language	SQL extensions, CQL	Java, Scala, Python, SQL-like
Query plans	global, optimized, with pre-defined operators	independent, with custom operators
Execution	centralized	distributed
Parallelism	pipeline	data, pipeline, task
Time & progress	heartbeats, slack, punctuations	low watermarks, frontiers
State	shared synopses, in-memory	per-query, partitioned, persistent, larger- than-memory
Fault tolerance	HA-focused, limited correctness guarantees	distributed snapshots, exactly-once
Load management	load shedding, load-aware scheduling	backpressure, elasticity

Lecture references

Some material in this lecture was assembled from the following sources:

- Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. **Data Stream Management: Processing High-Speed Data Streams**. Springer-Verlag, Berlin, Heidelberg.
- Lukasz Golab and M. Tamer Özsu. **Issues in data stream management**. SIGMOD Rec. 32, 2 (June 2003).
- David Maier, Jin Li, Peter Tucker, Kristin Tufte, and Vassilis Papadimos. **Semantics of data streams and operators**. In Proceedings of the 10th international conference on Database Theory (ICDT'05).
- Michael Stonebraker, Uğur Çetintemel, and Stan Zdonik. Michael Stonebraker, Uğur Çetintemel, and Stan Zdonik. The 8 requirements of real-time stream processing. SIGMOD Rec. 34, 4 (December 2005).