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Topics covered in this lecture
• What’s the meaning of one minute? 

• different notions of time 
• application time skew 

• Watermarks 
• propagation, trade-offs 
• late data handling 

• Heartbeats 
• automatic generation 
• guarantees, ensuring progress
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What’s the meaning of one minute?
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application
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• Event time 
is the time tuples are generated at the sources. Also called application time. 

• Processing time 
is the time tuples are processed in a streaming system. 

• Ingestion time 
is the time tuples arrive in a streaming system.
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Notions of time
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Assuming that a stream is ordered by one of its attributes A in increasing order, 
then the processing of the stream progresses when the smallest value of A 
among the unprocessed tuples increases over time. 
A is called a progressing attribute, e.g. the event time timestamp.
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Out-of-order data tuples arrive in a streaming system after tuples with later 
event time timestamps.
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Out-of-order data

t=4 t=7Source OPt=9

• External stochastic factors 
• System operations

Causes of disorder
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External stochastic factors 
• Network routing 
• Multiple input sources
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Causes of disorder

Source

Source

1511

916
19

OP

5 16 1 9

Merge step before 
processing produces 
out-of-order tuples



🤧😷🤒 Vasiliki Kalavri | Boston University 2021

System operations 
• A parallel join operator produces a shuffled combination of the two joined 

streams and output results in the order of match. 
• A union operator on two unsynchronized streams yields a stream with all tuples 

of the two input streams interleaving each other in random order. 
• Windowing based on an attribute that is different to the ordering attribute 

reorders the stream. 
• Data prioritization using an attribute different to the ordering one changes the 

order.
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Causes of disorder
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Disorder caused by system operation
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• Buffer incoming tuples 

• Reorder incoming tuples 

• Push tuples to the operator logic 
according to a lateness bound 
and ignore tuples that arrive to 
the operator after that.
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In-order architecture
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Out-of-order architecture 
• Operators or a global authority produce progress information using some metric and 

propagate it to the dataflow graph. 
• The progress information typically reflects the oldest unprocessed tuple in the system and 

establishes a lateness bound for admitting out-of-order tuples. 
• In contrast to in-order systems, tuples are processed in the order of their arrival up to the 

lateness bound.
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Out-of-order architecture
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• Admit incoming tuples that are 
not past the lateness bound and 
ignore the rest 

• The lateness bound typically 
reflects the oldest pending work 

• Update progress information 

• Propagate progress information 
to the data flow graph
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Out-of-order architecture
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Leads to wrong results if ignored 
• Dropping a tuple that arrived after its time will make a join computation incorrect 

Impedes processing progress for order-sensitive operators (join, aggregate) 
• In-order architecture systems 

• Buffer and reorder data as they come 
• Add processing overhead, memory space overhead, and latency 

Out-of-order architecture systems 
• Establish bound based on processing progress and process tuples since that point without reordering 
• Stock processing state 
• Add implementation complexity 

Except for order-agnostic operators 
• project, filter, map, union
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Effects of disorder
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• Slack 
• Heartbeat 
• Low-watermark 
• Pointstamp and frontier, see Naiad SOSP’13
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Progress-tracking mechanisms
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• Wait for out-of-order data for a fixed amount of a certain metric. 

• Originally denoted the number of tuples intervening between the actual 
occurrence of an out-of-order tuple and the position it would have in 
the input stream if it arrived on time. 

• Can also be quantified in terms of time. 

• Slack marks a fixed grace period for late tuples.
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Slack
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Slack in action
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• Close first window [0,4) when t=3 arrives


• Normally window would close when t=4 
arrives, but because of slack=1 window 
closing awaits the next tuple that will make 
the slack expire


• Because t=3 arrives it is included in the 
window


• The window will output C=3 for t=1, t=2, 
and t=3


• Admit t=3 because of slack=1

Input tuples generated 
by order of top to bottom 
(t=1 was sent  first)
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Heartbeats
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Causes of event-time skew

• Unsynchronized clocks at the sources 

• Different latencies from different sources 
to the system 

• Data transmission over a non-order-
preserving channel
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SPS
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Distributed sources generate 
stream tuples with event 

timestamps τ.
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Distributed sources generate 
stream tuples with event 

timestamps τ.

Network latency is given by 
wall-clock time L.
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Distributed sources generate 
stream tuples with event 

timestamps τ.

Network latency is given by 
wall-clock time L.

A sequencer buffers out-of-
order tuples and presents them 

to the stream processor in 
increasing timestamp order.
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Distributed sources generate 
stream tuples with event 

timestamps τ.

Network latency is given by 
wall-clock time L.

A sequencer buffers out-of-
order tuples and presents them 

to the stream processor in 
increasing timestamp order.

Continuous queries  are 
registered with the DSMS.
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Progress requirement: Every stream element must eventually be 
moved from the input manager to the query processor without 

violating the ordering requirement.



Vasiliki Kalavri | Boston University 2021

Perfect Heartbeats

• If the above definition holds always and no late data ever 
arrive, the heartbeats are perfect. 

• To deduce perfect heartbeats, there need to exist bounds on: 
1. event clock skew at the sources 
2. out-of-order generation of stream elements 
3. network latency
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A heartbeat for a set of streams S1, S2, ..., Sn, at wall-clock time 
c is the maximum event timestamp τ so that all elements 

arriving on S1, S2, ..., Sn after time c must have timestamp > τ.
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Skew bound

23

ϕi, ϕjGiven sources

(tij, δij), tij ≥ 0, δij ≥ 0

if at time c, ϕi emits a tuple with timestamp
then all tuples emitted by ϕj after time c + tij
shall have timestamp > τ − δij

τ

the pair denotes that:
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Skew bound
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ϕi, ϕjGiven sources

(tij, δij), tij ≥ 0, δij ≥ 0

ϕj lags behind 

and this guarantee is delayed by
tij

the pair denotes that:

ϕi

by at most δij units of event time

units of processing time.
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Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

Any tuple that φ2 emits after c’=15 + 2 = 17 
will have τ’ > τ - δ = 8 - 3 = 5
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Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

<v, 8>

c=15

Any tuple that φ2 emits after c’=15 + 2 = 17 
will have τ’ > τ - δ = 8 - 3 = 5
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Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

Any tuple that φ2 emits after c’=15 + 2 = 17 
will have τ’ > τ - δ = 8 - 3 = 5

c=16
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Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

Any tuple that φ2 emits after c’=15 + 2 = 17 
will have τ’ > τ - δ = 8 - 3 = 5

<v, 7>

c=17
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Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

Any tuple that φ2 emits after c’=15 + 2 = 17 
will have τ’ > τ - δ = 8 - 3 = 5

<v, 7>

c=17



Vasiliki Kalavri | Boston University 2021

Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

Any tuple that φ2 emits after c’=15 + 2 = 17 
will have τ’ > τ - δ = 8 - 3 = 5

<v, 4>

c=20
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Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

Any tuple that φ2 emits after c’=15 + 2 = 17 
will have τ’ > τ - δ = 8 - 3 = 5

<v, 4>

c=20
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Out-of-order generation bound

26

ϕiHow out-of-order a source

(tii, δii)

The reordering off timestamps is bounded by

is given by the skew bound of

generates tuples

ϕi with respect to itself

 i.e.,

δii.
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Out-of-order generation bound

26

ϕiHow out-of-order a source

(tii, δii)

The reordering off timestamps is bounded by

is given by the skew bound of

generates tuples

ϕi with respect to itself

 i.e.,

δii.

What is the value of 

if timestamps are in order?
if there are duplicate timestamps but no reordering?

δii
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Latency bound
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ϕi

units of wall-clock time.

Li

to be transmitted to the stream processor, then

t

The bound on transmission latency from

to the stream processor is given by

If any tuple from takesϕi units of processing time

0 ≤ t ≤ Li .
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Skew bound matrix

28

B =
(0,0) (1,1) (1,3)

− (0,1) (1,1)
− − (0,2)

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3
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Skew bound matrix

28

B =
(0,0) (1,1) (1,3)

− (0,1) (1,1)
− − (0,2)

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3

ϕ3 lags behind 

and this guarantee is delayed by

ϕ1
by at most 3 units of event time

1 unit of processing time.
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Skew bound matrix

28

B =
(0,0) (1,1) (1,3)

− (0,1) (1,1)
− − (0,2)

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3

ϕ3 lags behind 

and this guarantee is delayed by

ϕ1
by at most 3 units of event time

1 unit of processing time.

ϕ2 allows duplicate 
timestamps
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Heartbeat generation algorithm

29
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Indirect guarantees

30

B =
(0,0) (1,1) (1,3)

− (0,1) (1,1)
− − (0,2)

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3
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Indirect guarantees

30

B =
(0,0) (1,1) (1,3)

− (0,1) (1,1)
− − (0,2)

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3

ϕ3 lags behind ϕ2
by 1 unit of event time
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Indirect guarantees

30

B =
(0,0) (1,1) (1,3)

− (0,1) (1,1)
− − (0,2)

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3

ϕ3 lags behind ϕ2
by 1 unit of event time

ϕ2 lags behind ϕ1
by 1 unit of event time
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Indirect guarantees

30

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3

ϕ3 lags behind ϕ2
by 1 unit of event time

ϕ2 lags behind ϕ1
by 1 unit of event time

B =
(0,0) (1,1) (1,2)

− (0,1) (1,1)
− − (0,2)
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Query-level heartbeats

31

O1

O2

S1 S2

S3

τ1 τ2

τ3
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Query-level heartbeats

31

O1

O2

S1 S2

S3

τ1 τ2

τ3

What is the value of 
the global heartbeat?
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Query-level heartbeats

32

O1

O2

S1 S2

S3

τ1 τ2

τ3

τ = min(τ1, τ2, . . . , τn)
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Query-level heartbeats

32

O1

O2

S1 S2

S3

τ1 τ2

τ3

τ = min(τ1, τ2, . . . , τn)

What if                          ?τ1 ≈ τ2 ≫ τ3
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Operator-level heartbeats

33

O1

O2

S1 S2

S3τO1
= min(τ1, τ2)

τO2
= min(τO1

, τ3)



🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Watermarks
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• The low watermark for an attribute of a stream is the lowest value of that 
attribute within a certain subset of the stream. 

• Future tuples will probabilistically bear a higher value than the current low-
watermark for the same attribute. 

• The mechanism is used by a streaming system to process data past the low 
watermark for an attribute, e.g. an aggregate grouped by the attribute, or to 
remove state that is maintained for the attribute, for instance, the 
corresponding hash table entries of a hash join computation. 

 

35

Low watermark
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• Close first window [0,4) when low-
watermark t=4 arrives 

• Normally the window would close when 
t=5 arrives, but because the low 
watermark reflects the oldest pending 
work in the system, it is the low-watermark 
that closes windows to cater for late data. 

• The window will output C=3 for t=1, t=2, 
and t=3 

• Drop t=4 because it is not greater (more 
recent) than the low-watermark

36

Low watermark in action

Source

Operator 
clock (low-

watermark): t=4t=7 t=7 t=4 C=3

t=2

t=5

t=6
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t=1

t=2

t=7

Input tuples generated

by order of top to bottom

(t=1 was sent  first)

watermarks
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• Heartbeats and slack are both external to a data stream. 

• Heartbeats are signals communicated from an input source to a 
streaming system’s ingestion point. 

• Differently to heartbeats, which is a mechanism of the streaming 
system hidden from users, slack is part of the query specification 
provided by users.

37

Slack vs heartbeats
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• Heartbeats and low-watermarks are similar in terms of progress-
tracking logic. 

• While heartbeats address the progress of stream tuple generation at 
the input sources, the low-watermark extends this to the processing 
progress of computations in the streaming system by reflecting their 
oldest pending work. 

• The low-watermark generalizes the concept of the oldest value, which 
signifies the current progress point, to any progressing attribute of a 
stream tuple besides timestamps.

38

Heartbeats vs low watermark
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10 8 9

6

7 6

5

watermark

record timestamp

records

3

Watermarks (in Flink) flow along dataflow edges. 
They are special records generated by the 

sources or assigned by the application.

A watermark for time T states that 
event time has progressed to T in 
that particular stream (or partition).
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Watermark propagation
Source

1012

101823

11

1511

15

event time

watermark

40

15
14

20

• The input watermark captures the progress of upstream stages 
• minimum of output watermarks of all upstream tasks 

• The output watermark captures the progress of the stage itself 
• minimum of input watermarks and event-times of non-late data
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Event-time update
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1. Watermarks must be monotonically increasing in order to ensure that 
the event time clocks of tasks are progressing and not going backwards. 

2. A watermark with a timestamp T indicates that all subsequent records 
should have timestamps > T.

42

Watermark properties
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Watermarks are essential to both event-time windows and operators 
handling out-of-order events: 

• When an operator receives a watermark with time T, it can assume that 
no further events with timestamp less than T will be received.  

• It can then either trigger computation or order received events.

43

Evaluation of event-time windows
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Watermarks provide a configurable trade-off between results 
confidence and latency: 

• Eager watermarks ensure low latency but provide lower confidence 
• Late events might arrive after the watermark 

• Slow watermarks increase confidence but they might lead to higher 
processing latency.

44

Trade-offs
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Periodic: periodically ask the user-defined function for the current 
watermark timestamp. 

Punctuated: check for a watermark in each passing record, e.g. if the 
stream contains special records that encode watermark information. 

val env = StreamExecutionEnvironment.getExecutionEnvironment
// generate watermarks every 5 seconds
env.getConfig.setAutoWatermarkInterval(5000)

45

Watermarks in Flink



🤧😷🤒 Vasiliki Kalavri | Boston University 202146

/**
 * This generator generates watermarks assuming that elements arrive out of order,
 * but only to a certain degree. The latest elements for a certain timestamp t will arrive
 * at most n milliseconds after the earliest elements for timestamp t.
 */
class BoundedOutOfOrdernessGenerator extends AssignerWithPeriodicWatermarks[MyEvent] {

    val maxOutOfOrderness = 3500L // 3.5 seconds

    var currentMaxTimestamp: Long = _

    override def onEvent(element: MyEvent, eventTimestamp: Long): Unit = {
        currentMaxTimestamp = max(eventTimestamp, currentMaxTimestamp)
    }

    override def onPeriodicEmit(): Unit = {
        // emit the watermark as current highest timestamp minus the out-of-orderness bound
        output.emitWatermark(new Watermark(currentMaxTimestamp - maxOutOfOrderness - 1));
    }
}

More examples: https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/event_timestamps_watermarks.html 

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/event_timestamps_watermarks.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/event_timestamps_watermarks.html
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• In many real-world applications, the system does not have enough 
knowledge to perfectly determine watermarks:  

• how long will a user might remain disconnected? 
• are they going through a tunnel, boarding a plane, or never playing again? 

• Tracking global progress in a distributed system is problematic in the 
presence of straggler tasks.

47

Handling late data
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• It is crucial that the stream processing system provides some 
mechanism to deal with events that might arrive after the watermark. 

• Depending on the application requirements, you might want to: 
• ignore late data 
• log late data to some monitoring application 
• correct previously emitted results

48

What to do with late data?
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val readings: DataStream[SensorReading] = ???

val countPer10Secs: DataStream[(String, Long, Int)] = readings

.keyBy(_.id)

.timeWindow(Time.seconds(10))

// emit late readings to a side output

.sideOutputLateData(new OutputTag[SensorReading]("late-readings"))

// count readings per window

.process(new CountFunction())

// retrieve the late events from the side output as a stream

val lateStream: DataStream[SensorReading] = countPer10Secs

.getSideOutput(new OutputTag[SensorReading]("late-readings"))

49
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