
Vasiliki Kalavri | Boston University 2021

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

CS 591 K1:
Data Stream Processing and Analytics

Spring 2021
Notions of time and progress

mailto:vkalavri@bu.edu
mailto:vkalavri@bu.edu

Vasiliki Kalavri | Boston University 2021

Topics covered in this lecture
• What’s the meaning of one minute?

• different notions of time
• application time skew

• Watermarks
• propagation, trade-offs
• late data handling

• Heartbeats
• automatic generation
• guarantees, ensuring progress

2

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

What’s the meaning of one minute?

3

Streaming
application

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• Event time
is the time tuples are generated at the sources. Also called application time.

• Processing time
is the time tuples are processed in a streaming system.

• Ingestion time
is the time tuples arrive in a streaming system.

4

Notions of time

Event time
Ingestion time

Processing time

Source
OP

Sinkc
b

a

Vasiliki Kalavri | ETH Zürich 20195

1977 1980 1983 1999 2002 2005 2015

Episode
IV:

A New
Hope

Episode
V:

The
Empire
Strikes
Back

Episode
VI:

Return of
the Jedi

Episode I:
The

Phantom
Menace

Episode
II:

Attach of
the

Clones

Episode
III:

Revenge
of

the Sith

Episode
VII:

The Force
Awakens

This is called event time

This is called processing time

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Assuming that a stream is ordered by one of its attributes A in increasing order,
then the processing of the stream progresses when the smallest value of A
among the unprocessed tuples increases over time.
A is called a progressing attribute, e.g. the event time timestamp.

6

Progress

Source

Operator

t=0

t=3

t=5

t=6

t=1

t=4

Source

Operator

t=6

t=8

t=9

t=4 t=7

t=5

Progressing attribute:

t=0

Progressing attribute:

t=4

later

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Out-of-order data tuples arrive in a streaming system after tuples with later
event time timestamps.

7

Out-of-order data

t=4 t=7Source OPt=9

• External stochastic factors
• System operations

Causes of disorder

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

External stochastic factors
• Network routing
• Multiple input sources

8

Causes of disorder

Source

Source

1511

916
19

OP

5 16 1 9

Merge step before
processing produces
out-of-order tuples

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

System operations
• A parallel join operator produces a shuffled combination of the two joined

streams and output results in the order of match.
• A union operator on two unsynchronized streams yields a stream with all tuples

of the two input streams interleaving each other in random order.
• Windowing based on an attribute that is different to the ordering attribute

reorders the stream.
• Data prioritization using an attribute different to the ordering one changes the

order.

9

Causes of disorder

🤧😷🤒 Vasiliki Kalavri | Boston University 202110

Disorder caused by system operation

Source

Source

Join

Join1511

3
7

12

5
6

13

249

OP

(11, “Nick”, “Cell phone”)

(12, “Nick”, “USB”)

7
11

(11, “Nick”, [“Cell phone”, “USB”])

4
9

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• Buffer incoming tuples

• Reorder incoming tuples

• Push tuples to the operator logic
according to a lateness bound
and ignore tuples that arrive to
the operator after that.

11

In-order architecture

Source

Operator

t=6

t=8

Ordered buffer

of incoming tuples

Operator logic

t=4 t=7

Incoming tuples
t=5

Lateness bound

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Out-of-order architecture
• Operators or a global authority produce progress information using some metric and

propagate it to the dataflow graph.
• The progress information typically reflects the oldest unprocessed tuple in the system and

establishes a lateness bound for admitting out-of-order tuples.
• In contrast to in-order systems, tuples are processed in the order of their arrival up to the

lateness bound.

12

Out-of-order architecture

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• Admit incoming tuples that are
not past the lateness bound and
ignore the rest

• The lateness bound typically
reflects the oldest pending work

• Update progress information

• Propagate progress information
to the data flow graph

13

Out-of-order architecture

Source

Operator

Check if incoming tuple is past
the lateness bound and

produce progress

information

Operator logic

t=4 t=7

Incoming tuples

t=5

Lateness bound

t=3

t=6

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Leads to wrong results if ignored
• Dropping a tuple that arrived after its time will make a join computation incorrect

Impedes processing progress for order-sensitive operators (join, aggregate)
• In-order architecture systems

• Buffer and reorder data as they come
• Add processing overhead, memory space overhead, and latency

Out-of-order architecture systems
• Establish bound based on processing progress and process tuples since that point without reordering
• Stock processing state
• Add implementation complexity

Except for order-agnostic operators
• project, filter, map, union

14

Effects of disorder

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• Slack
• Heartbeat
• Low-watermark
• Pointstamp and frontier, see Naiad SOSP’13

15

Progress-tracking mechanisms

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• Wait for out-of-order data for a fixed amount of a certain metric.

• Originally denoted the number of tuples intervening between the actual
occurrence of an out-of-order tuple and the position it would have in
the input stream if it arrived on time.

• Can also be quantified in terms of time.

• Slack marks a fixed grace period for late tuples.

16

Slack

🤧😷🤒 Vasiliki Kalavri | Boston University 202117

Slack in action

Source

Operator
clock t=4
 slack=1t=5 t=7 t=3

t=4

t=1

t=2

t=4

t=3

t=6

t=7

t=5

t=6

• Close first window [0,4) when t=3 arrives

• Normally window would close when t=4
arrives, but because of slack=1 window
closing awaits the next tuple that will make
the slack expire

• Because t=3 arrives it is included in the
window

• The window will output C=3 for t=1, t=2,
and t=3

• Admit t=3 because of slack=1

Input tuples generated
by order of top to bottom
(t=1 was sent first)

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Heartbeats

Vasiliki Kalavri | Boston University 2021

Causes of event-time skew

• Unsynchronized clocks at the sources

• Different latencies from different sources
to the system

• Data transmission over a non-order-
preserving channel

19

SPS

Vasiliki Kalavri | ETH Zürich 201920

Vasiliki Kalavri | ETH Zürich 201920

Distributed sources generate
stream tuples with event

timestamps τ.

Vasiliki Kalavri | ETH Zürich 201920

Distributed sources generate
stream tuples with event

timestamps τ.

Network latency is given by
wall-clock time L.

Vasiliki Kalavri | ETH Zürich 201920

Distributed sources generate
stream tuples with event

timestamps τ.

Network latency is given by
wall-clock time L.

A sequencer buffers out-of-
order tuples and presents them

to the stream processor in
increasing timestamp order.

Vasiliki Kalavri | ETH Zürich 201920

Distributed sources generate
stream tuples with event

timestamps τ.

Network latency is given by
wall-clock time L.

A sequencer buffers out-of-
order tuples and presents them

to the stream processor in
increasing timestamp order.

Continuous queries are
registered with the DSMS.

Vasiliki Kalavri | ETH Zürich 201921

Progress requirement: Every stream element must eventually be
moved from the input manager to the query processor without

violating the ordering requirement.

Vasiliki Kalavri | Boston University 2021

Perfect Heartbeats

• If the above definition holds always and no late data ever
arrive, the heartbeats are perfect.

• To deduce perfect heartbeats, there need to exist bounds on:
1. event clock skew at the sources
2. out-of-order generation of stream elements
3. network latency

22

A heartbeat for a set of streams S1, S2, ..., Sn, at wall-clock time
c is the maximum event timestamp τ so that all elements

arriving on S1, S2, ..., Sn after time c must have timestamp > τ.

Vasiliki Kalavri | Boston University 2021

Skew bound

23

ϕi, ϕjGiven sources

(tij, δij), tij ≥ 0, δij ≥ 0

if at time c, ϕi emits a tuple with timestamp
then all tuples emitted by ϕj after time c + tij
shall have timestamp > τ − δij

τ

the pair denotes that:

Vasiliki Kalavri | Boston University 2021

Skew bound

24

ϕi, ϕjGiven sources

(tij, δij), tij ≥ 0, δij ≥ 0

ϕj lags behind

and this guarantee is delayed by
tij

the pair denotes that:

ϕi

by at most δij units of event time

units of processing time.

Vasiliki Kalavri | Boston University 2021

Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

Any tuple that φ2 emits after c’=15 + 2 = 17
will have τ’ > τ - δ = 8 - 3 = 5

Vasiliki Kalavri | Boston University 2021

Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

<v, 8>

c=15

Any tuple that φ2 emits after c’=15 + 2 = 17
will have τ’ > τ - δ = 8 - 3 = 5

Vasiliki Kalavri | Boston University 2021

Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

Any tuple that φ2 emits after c’=15 + 2 = 17
will have τ’ > τ - δ = 8 - 3 = 5

c=16

Vasiliki Kalavri | Boston University 2021

Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

Any tuple that φ2 emits after c’=15 + 2 = 17
will have τ’ > τ - δ = 8 - 3 = 5

<v, 7>

c=17

Vasiliki Kalavri | Boston University 2021

Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

Any tuple that φ2 emits after c’=15 + 2 = 17
will have τ’ > τ - δ = 8 - 3 = 5

<v, 7>

c=17

Vasiliki Kalavri | Boston University 2021

Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

Any tuple that φ2 emits after c’=15 + 2 = 17
will have τ’ > τ - δ = 8 - 3 = 5

<v, 4>

c=20

Vasiliki Kalavri | Boston University 2021

Skew bound: example

25

Source φ1 Source φ2

SPS

(t12, δ12) = (2, 3)

Any tuple that φ2 emits after c’=15 + 2 = 17
will have τ’ > τ - δ = 8 - 3 = 5

<v, 4>

c=20

Vasiliki Kalavri | Boston University 2021

Out-of-order generation bound

26

ϕiHow out-of-order a source

(tii, δii)

The reordering off timestamps is bounded by

is given by the skew bound of

generates tuples

ϕi with respect to itself

 i.e.,

δii.

Vasiliki Kalavri | Boston University 2021

Out-of-order generation bound

26

ϕiHow out-of-order a source

(tii, δii)

The reordering off timestamps is bounded by

is given by the skew bound of

generates tuples

ϕi with respect to itself

 i.e.,

δii.

What is the value of

if timestamps are in order?
if there are duplicate timestamps but no reordering?

δii

Vasiliki Kalavri | Boston University 2021

Latency bound

27

ϕi

units of wall-clock time.

Li

to be transmitted to the stream processor, then

t

The bound on transmission latency from

to the stream processor is given by

If any tuple from takesϕi units of processing time

0 ≤ t ≤ Li .

Vasiliki Kalavri | Boston University 2021

Skew bound matrix

28

B =
(0,0) (1,1) (1,3)

− (0,1) (1,1)
− − (0,2)

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3

Vasiliki Kalavri | Boston University 2021

Skew bound matrix

28

B =
(0,0) (1,1) (1,3)

− (0,1) (1,1)
− − (0,2)

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3

ϕ3 lags behind

and this guarantee is delayed by

ϕ1
by at most 3 units of event time

1 unit of processing time.

Vasiliki Kalavri | Boston University 2021

Skew bound matrix

28

B =
(0,0) (1,1) (1,3)

− (0,1) (1,1)
− − (0,2)

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3

ϕ3 lags behind

and this guarantee is delayed by

ϕ1
by at most 3 units of event time

1 unit of processing time.

ϕ2 allows duplicate
timestamps

Vasiliki Kalavri | ETH Zürich 2019

Heartbeat generation algorithm

29

Vasiliki Kalavri | Boston University 2021

Indirect guarantees

30

B =
(0,0) (1,1) (1,3)

− (0,1) (1,1)
− − (0,2)

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3

Vasiliki Kalavri | Boston University 2021

Indirect guarantees

30

B =
(0,0) (1,1) (1,3)

− (0,1) (1,1)
− − (0,2)

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3

ϕ3 lags behind ϕ2
by 1 unit of event time

Vasiliki Kalavri | Boston University 2021

Indirect guarantees

30

B =
(0,0) (1,1) (1,3)

− (0,1) (1,1)
− − (0,2)

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3

ϕ3 lags behind ϕ2
by 1 unit of event time

ϕ2 lags behind ϕ1
by 1 unit of event time

Vasiliki Kalavri | Boston University 2021

Indirect guarantees

30

ϕ1 ϕ2 ϕ3

ϕ1

ϕ2

ϕ3

ϕ3 lags behind ϕ2
by 1 unit of event time

ϕ2 lags behind ϕ1
by 1 unit of event time

B =
(0,0) (1,1) (1,2)

− (0,1) (1,1)
− − (0,2)

Vasiliki Kalavri | Boston University 2021

Query-level heartbeats

31

O1

O2

S1 S2

S3

τ1 τ2

τ3

Vasiliki Kalavri | Boston University 2021

Query-level heartbeats

31

O1

O2

S1 S2

S3

τ1 τ2

τ3

What is the value of
the global heartbeat?

Vasiliki Kalavri | Boston University 2021

Query-level heartbeats

32

O1

O2

S1 S2

S3

τ1 τ2

τ3

τ = min(τ1, τ2, . . . , τn)

Vasiliki Kalavri | Boston University 2021

Query-level heartbeats

32

O1

O2

S1 S2

S3

τ1 τ2

τ3

τ = min(τ1, τ2, . . . , τn)

What if ?τ1 ≈ τ2 ≫ τ3

Vasiliki Kalavri | Boston University 2021

Operator-level heartbeats

33

O1

O2

S1 S2

S3τO1
= min(τ1, τ2)

τO2
= min(τO1

, τ3)

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Watermarks

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• The low watermark for an attribute of a stream is the lowest value of that
attribute within a certain subset of the stream.

• Future tuples will probabilistically bear a higher value than the current low-
watermark for the same attribute.

• The mechanism is used by a streaming system to process data past the low
watermark for an attribute, e.g. an aggregate grouped by the attribute, or to
remove state that is maintained for the attribute, for instance, the
corresponding hash table entries of a hash join computation.

 

35

Low watermark

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• Close first window [0,4) when low-
watermark t=4 arrives

• Normally the window would close when
t=5 arrives, but because the low
watermark reflects the oldest pending
work in the system, it is the low-watermark
that closes windows to cater for late data.

• The window will output C=3 for t=1, t=2,
and t=3

• Drop t=4 because it is not greater (more
recent) than the low-watermark

36

Low watermark in action

Source

Operator
clock (low-

watermark): t=4t=7 t=7 t=4 C=3

t=2

t=5

t=6

t=4

t=4

t=3

t=7

t=5
t=2

t=6

t=1

t=2

t=7

Input tuples generated

by order of top to bottom

(t=1 was sent first)

watermarks

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• Heartbeats and slack are both external to a data stream.

• Heartbeats are signals communicated from an input source to a
streaming system’s ingestion point.

• Differently to heartbeats, which is a mechanism of the streaming
system hidden from users, slack is part of the query specification
provided by users.

37

Slack vs heartbeats

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• Heartbeats and low-watermarks are similar in terms of progress-
tracking logic.

• While heartbeats address the progress of stream tuple generation at
the input sources, the low-watermark extends this to the processing
progress of computations in the streaming system by reflecting their
oldest pending work.

• The low-watermark generalizes the concept of the oldest value, which
signifies the current progress point, to any progressing attribute of a
stream tuple besides timestamps.

38

Heartbeats vs low watermark

Vasiliki Kalavri | Boston University 202139

10 8 9

6

7 6

5

watermark

record timestamp

records

3

Watermarks (in Flink) flow along dataflow edges.
They are special records generated by the

sources or assigned by the application.

A watermark for time T states that
event time has progressed to T in
that particular stream (or partition).

Vasiliki Kalavri | Boston University 2021

Watermark propagation
Source

1012

101823

11

1511

15

event time

watermark

40

15
14

20

• The input watermark captures the progress of upstream stages
• minimum of output watermarks of all upstream tasks

• The output watermark captures the progress of the stage itself
• minimum of input watermarks and event-times of non-late data

🤧😷🤒 Vasiliki Kalavri | Boston University 202141

Event-time update

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

1. Watermarks must be monotonically increasing in order to ensure that
the event time clocks of tasks are progressing and not going backwards.

2. A watermark with a timestamp T indicates that all subsequent records
should have timestamps > T.

42

Watermark properties

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Watermarks are essential to both event-time windows and operators
handling out-of-order events:

• When an operator receives a watermark with time T, it can assume that
no further events with timestamp less than T will be received.

• It can then either trigger computation or order received events.

43

Evaluation of event-time windows

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Watermarks provide a configurable trade-off between results
confidence and latency:

• Eager watermarks ensure low latency but provide lower confidence
• Late events might arrive after the watermark

• Slow watermarks increase confidence but they might lead to higher
processing latency.

44

Trade-offs

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Periodic: periodically ask the user-defined function for the current
watermark timestamp.

Punctuated: check for a watermark in each passing record, e.g. if the
stream contains special records that encode watermark information.

val env = StreamExecutionEnvironment.getExecutionEnvironment
// generate watermarks every 5 seconds
env.getConfig.setAutoWatermarkInterval(5000)

45

Watermarks in Flink

🤧😷🤒 Vasiliki Kalavri | Boston University 202146

/**
 * This generator generates watermarks assuming that elements arrive out of order,
 * but only to a certain degree. The latest elements for a certain timestamp t will arrive
 * at most n milliseconds after the earliest elements for timestamp t.
 */
class BoundedOutOfOrdernessGenerator extends AssignerWithPeriodicWatermarks[MyEvent] {

 val maxOutOfOrderness = 3500L // 3.5 seconds

 var currentMaxTimestamp: Long = _

 override def onEvent(element: MyEvent, eventTimestamp: Long): Unit = {
 currentMaxTimestamp = max(eventTimestamp, currentMaxTimestamp)
 }

 override def onPeriodicEmit(): Unit = {
 // emit the watermark as current highest timestamp minus the out-of-orderness bound
 output.emitWatermark(new Watermark(currentMaxTimestamp - maxOutOfOrderness - 1));
 }
}

More examples: https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/event_timestamps_watermarks.html

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/event_timestamps_watermarks.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/event_timestamps_watermarks.html

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• In many real-world applications, the system does not have enough
knowledge to perfectly determine watermarks:

• how long will a user might remain disconnected?
• are they going through a tunnel, boarding a plane, or never playing again?

• Tracking global progress in a distributed system is problematic in the
presence of straggler tasks.

47

Handling late data

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• It is crucial that the stream processing system provides some
mechanism to deal with events that might arrive after the watermark.

• Depending on the application requirements, you might want to:
• ignore late data
• log late data to some monitoring application
• correct previously emitted results

48

What to do with late data?

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

val readings: DataStream[SensorReading] = ???

val countPer10Secs: DataStream[(String, Long, Int)] = readings

.keyBy(_.id)

.timeWindow(Time.seconds(10))

// emit late readings to a side output

.sideOutputLateData(new OutputTag[SensorReading]("late-readings"))

// count readings per window

.process(new CountFunction())

// retrieve the late events from the side output as a stream

val lateStream: DataStream[SensorReading] = countPer10Secs

.getSideOutput(new OutputTag[SensorReading]("late-readings"))

49

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: A new model and architecture for data stream management. VLDBJ, 2003.

• P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting punctuation semantics in continuous data streams. IEEE
TKDE, 2003.

• U. Srivastava and J. Widom. Flexible time management in data stream systems. In PODS. ACM, 2004.

• J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier. Out-of-order processing: A new architecture for
high- performance stream systems. In VLDB, 2008.

• T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S.
Whittle. MillWheel: Fault-tolerant stream processing at internet scale. In VLDB, 2013.

• D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: A timely dataflow system. In SOSP,
2013.

• T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry,
E. Schmidt, et al. The dataflow model: A practical approach to balancing correctness, latency, and cost in massive-
scale, un- bounded, out-of-order data processing. In VLDB, 2015.

• P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache Flink™: Stream and batch
processing in a single engine. IEEE Data Eng. Bull., 38:28–38, 2015.

50

References

