
Vasiliki Kalavri | Boston University 2021

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu

CS 591 K1:
Data Stream Processing and Analytics

Spring 2021
Window aggregation

mailto:vkalavri@bu.edu
mailto:vkalavri@bu.edu

Vasiliki Kalavri | Boston University 2021

Window operators

2

Vasiliki Kalavri | Boston University 2021

• Practical way to perform operations on unbounded input

• e.g. joins, holistic aggregates

Window operators

2

Vasiliki Kalavri | Boston University 2021

• Practical way to perform operations on unbounded input

• e.g. joins, holistic aggregates

• Compute on most recent events only

• when providing real-time traffic information, you probably don't care about an accident that

happened 2 hours ago

Window operators

2

Vasiliki Kalavri | Boston University 2021

• Practical way to perform operations on unbounded input

• e.g. joins, holistic aggregates

• Compute on most recent events only

• when providing real-time traffic information, you probably don't care about an accident that

happened 2 hours ago

• Recent might mean different things

• last 5 sec

• last 10 events

• last 1h every 10 min

• last user session

Window operators

2

Vasiliki Kalavri | Boston University 2021

Window operators can be applied on a keyed or a non-keyed stream:

• Window operators on keyed windows are evaluated in parallel

• Non-keyed windows are processed in a single thread

To create a window operator, you need to specify two window components:

• A window assigner determines how the elements of the input stream are
grouped into windows.

• A window function is applied on the window contents and processes the
elements assigned to each window.

3

Keyed vs. non-keyed windows

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

The window type defines the logic based on which we derive finite windows from
a continuous stream of events:

•Tumbling (fixed) windows split time into segments of equal length l. The end of
a window marks the start of the next one.

• Each event belongs to one window only.

•Sliding (hopping) windows further define a slide parameter ls which determines
how often a new window starts. Consecutive windows overlap when ls < l.

• Events may belong to multiple windows.

•Session windows define a period of activity followed by a period of inactivity. A
session window ends if no event arrives for some time gap lg.

4

Window types

Vasiliki Kalavri | Boston University 2021

non-overlapping buckets of fixed size

12:1012:00 12:20

fixed time interval

key 3

key 2

key 1

Tumbling windows

5

Vasiliki Kalavri | Boston University 2021

overlapping buckets of fixed size

fixed length

slide

12:1012:00 12:20

key 3

key 2

key 1

Sliding windows

6

Vasiliki Kalavri | Boston University 2021

a period of activity followed by a period of inactivity

session gap

key 3

key 2

key 1

Session windows

7

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

We can define windows based on multiple (monotonically increasing)
measures:

• Time, such as event or processing time
• Count, i.e. number of events
• Data-dependent advancing measure, such as a punctuation or other signal in the stream

• e.g. when the amount of bids placed for an action exceeds a threshold

We can mix windowing measures to define multi-measure windows
• e.g. output the last 10 tuples (count) every 5 second (time).

8

Windowing measures

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Window aggregation functions define the computation we perform on the
elements of a window.

• Distributive functions: final values can be computed as the
aggregation of partial aggregates with constant size.

• min, max, sum

• Algebraic functions: final values can be computed by applying a
function on partial aggregates of fixed size.

• average, N largest values

• Holistic functions: partial aggregates have an unbounded size
• median, most frequent, rank

9

Window aggregation functions

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

We divide windows into 3 classes with regard to the context we need in
order to know where windows start and end:

• Context Free (CF) windows are those for which we can compute their boundaries without
processing any tuples.

• Tumbling and sliding windows are context-free as we can compute all start and end
timestamps based on their length and slide parameters.

• Forward Context Free (FCF) windows are those which depend on punctuations. We can
compute their boundaries once we have processed all events up to a timestamp t.

• Forward Context Aware (FCA) windows require us to process tuples after timestamp t in
order to compute all window boundaries before t.

• Multi-measure windows are FCA.

10

Window context

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Window evaluation

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

A window operator is responsible for grouping incoming records into windows
and making the evaluation function results available in the output whenever a
window triggers, i.e. when the system’s notion of time arrives at its end timestamp.

Evaluation functions can be applied eagerly, upon receiving a new record that
belongs to the window, or lazily, on trigger.

Regardless of the strategy used, the operator performs two types of processing:
(i) upon receiving a new event in its input, the operator needs decide how to assign
the event to one or more windows and possibly apply some partial aggregation.
(ii) upon receiving a trigger, the operator needs to decide which windows are
“complete”, apply the final aggregation, and produce results.

12

Window evaluation strategies

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Use a buffer to store incoming events, ordered
by timestamp.

On event: Append to the end of the buffer.

On trigger: Retrieve all records whose
timestamp falls inside the window bounds.

The number of records in the buffer is
proportional to the window size and input rate,
thus, state requirements can grow significantly
for high input rates and large windows.

The evaluation function is applied to the window
contents lazily at trigger time.

13

Record buffer

window size

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Use a buffer to store incoming events, ordered
by timestamp.

On event: Append to the end of the buffer.

On trigger: Retrieve all records whose
timestamp falls inside the window bounds.

The number of records in the buffer is
proportional to the window size and input rate,
thus, state requirements can grow significantly
for high input rates and large windows.

The evaluation function is applied to the window
contents lazily at trigger time.

13

Record buffer

window size

• General strategy which can
support all window types and
aggregation functions.

• Evaluation can be inefficient for
out-of-order streams (memory
copies), high rate (increasing
state), and overlapping windows
(multiple aggregate computations).

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Use a binary tree to store partial
aggregates on top of stream events.

On event: Insert to the binary tree and
update all affected partial aggregates.

On trigger: Combine partial aggregated to
compute and emit the final value.

The state requirements are high as both
events and partial aggregates are
maintained.

The evaluation function is applied on event
and on trigger.

14

Aggregate tree

window size

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Use a binary tree to store partial
aggregates on top of stream events.

On event: Insert to the binary tree and
update all affected partial aggregates.

On trigger: Combine partial aggregated to
compute and emit the final value.

The state requirements are high as both
events and partial aggregates are
maintained.

The evaluation function is applied on event
and on trigger.

14

Aggregate tree

• Partial aggregates can be shared
across overlapping windows.

• Memory copy for out-of-order events or
tree re-balancing.

• Low-latency trigger as final aggregates
can be computed by combining the
pre-computed partial aggregates.

window size

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Organize events into windows by assigning them IDs
(start or end timestamp).

On event: An assigner function computes a list of at

most window IDs the record belongs to. The event

is inserted to each window in the list.

On trigger: Window contents are retrieved using the ID.

This strategy has low state requirements when the
evaluation function is associative and commutative and
can be eagerly applied on record arrival.

If the window slide is much smaller than the window
length, successive windows have large overlap, resulting
to redundant computations and high state requirements.

⌈
l
ls

⌉

15

Window ID (Bucket)

window size

slide

w1

w2

w3

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Organize events into windows by assigning them IDs
(start or end timestamp).

On event: An assigner function computes a list of at

most window IDs the record belongs to. The event

is inserted to each window in the list.

On trigger: Window contents are retrieved using the ID.

This strategy has low state requirements when the
evaluation function is associative and commutative and
can be eagerly applied on record arrival.

If the window slide is much smaller than the window
length, successive windows have large overlap, resulting
to redundant computations and high state requirements.

⌈
l
ls

⌉

15

Window ID (Bucket)

• Low latency on trigger if aggregation
can be computed eagerly.

• Redundancy, high memory
requirements, and high latency on
event (many assignments) for
overlapping windows.

window size

slide

w1

w2

w3

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Organize events into smaller units, called panes.

A pane is the maximum shareable unit across windows and its
size is computed as .

This guarantees that a record belongs to only one pane and that
every window can be composed by a set of consecutive panes.

On event: An assigner function computes the pane ID and adds
the record to its state.

On trigger: Retrieve panes to assemble the window contents.

If the evaluation function supports pre-aggregation, it can be
eagerly applied on record arrival to maintain partially aggregated
results per pane.

The final aggregate is computed by combining the partial
aggregates on trigger.

lp = gcd(l, ls)

l
lp

16

Window Slicing

pane size

p3

p2

p1

window size

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Organize events into smaller units, called panes.

A pane is the maximum shareable unit across windows and its
size is computed as .

This guarantees that a record belongs to only one pane and that
every window can be composed by a set of consecutive panes.

On event: An assigner function computes the pane ID and adds
the record to its state.

On trigger: Retrieve panes to assemble the window contents.

If the evaluation function supports pre-aggregation, it can be
eagerly applied on record arrival to maintain partially aggregated
results per pane.

The final aggregate is computed by combining the partial
aggregates on trigger.

lp = gcd(l, ls)

l
lp

16

Window Slicing

• Low state requirements and low
latency on trigger.

• When the window length is a
multiple of the window slide, results
can be shared across windows.

pane size

p3

p2

p1

window size

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

Flink window functions

Vasiliki Kalavri | Boston University 2021

Window functions define the computation that is performed on the elements
of a window

• Incremental aggregation functions are applied when an element is

added to a window:

• They maintain a single value as window state and eventually emit the

aggregated value as the result.

• ReduceFunction and AggregateFunction

• Full window functions collect all elements of a window and iterate over
the list of all collected elements when evaluated:

• They require more space but support more complex logic.

• ProcessWindowFunction

Window functions

18

Vasiliki Kalavri | Boston University 2021

val minTempPerWindow: DataStream[(String, Double)] = sensorData
 .map(r => (r.id, r.temperature))
 .keyBy(_._1)
 .timeWindow(Time.seconds(15))
 .reduce((r1, r2) => (r1._1, r1._2.min(r2._2)))

19

ReduceFunction example

Vasiliki Kalavri | Boston University 2021

val minTempPerWindow: DataStream[(String, Double)] = sensorData
 .map(r => (r.id, r.temperature))
 .keyBy(_._1)
 .timeWindow(Time.seconds(15))
 .reduce((r1, r2) => (r1._1, r1._2.min(r2._2)))

19

ReduceFunction example

The function is evaluated for every
element entering the window

Input and output types
must be the same

Vasiliki Kalavri | Boston University 2021

public interface AggregateFunction<IN, ACC, OUT> extends Function,
Serializable {

 // create a new accumulator to start a new aggregate.
 ACC createAccumulator();

 // add an input element to the accumulator and return the accumulator.
 ACC add(IN value, ACC accumulator);

 // compute the result from the accumulator and return it.
 OUT getResult(ACC accumulator);

 // merge two accumulators and return the result.
 ACC merge(ACC a, ACC b);

}

20

AggregateFunction interface

Vasiliki Kalavri | Boston University 2021

val avgTempPerWindow: DataStream[(String, Double)] = sensorData
 .map(r => (r.id, r.temperature))
 .keyBy(_._1)
 .timeWindow(Time.seconds(15))
 .aggregate(new AvgTempFunction)

// An AggregateFunction to compute the average temperature per sensor.
// The accumulator holds the sum of temperatures and an event count.
class AvgTempFunction extends AggregateFunction [(String, Double), (String, Double, Int), (String, Double)]
{
 override def createAccumulator() = { ("", 0.0, 0)}

 override def add(in: (String, Double), acc: (String, Double, Int)) = {
 (in._1, in._2 + acc._2, 1 + acc._3)
 }

 override def getResult(acc: (String, Double, Int)) = { (acc._1, acc._2 / acc._3) }

 override def merge(acc1: (String, Double, Int), acc2: (String, Double, Int)) = {
 (acc1._1, acc1._2 + acc2._2, acc1._3 + acc2._3)
 }
}

21

AggregateFunction example

Vasiliki Kalavri | Boston University 2021

val avgTempPerWindow: DataStream[(String, Double)] = sensorData
 .map(r => (r.id, r.temperature))
 .keyBy(_._1)
 .timeWindow(Time.seconds(15))
 .aggregate(new AvgTempFunction)

// An AggregateFunction to compute the average temperature per sensor.
// The accumulator holds the sum of temperatures and an event count.
class AvgTempFunction extends AggregateFunction [(String, Double), (String, Double, Int), (String, Double)]
{
 override def createAccumulator() = { ("", 0.0, 0)}

 override def add(in: (String, Double), acc: (String, Double, Int)) = {
 (in._1, in._2 + acc._2, 1 + acc._3)
 }

 override def getResult(acc: (String, Double, Int)) = { (acc._1, acc._2 / acc._3) }

 override def merge(acc1: (String, Double, Int), acc2: (String, Double, Int)) = {
 (acc1._1, acc1._2 + acc2._2, acc1._3 + acc2._3)
 }
}

21

AggregateFunction example

Input type
Accumulator

type Output type

Vasiliki Kalavri | Boston University 2021

val avgTempPerWindow: DataStream[(String, Double)] = sensorData
 .map(r => (r.id, r.temperature))
 .keyBy(_._1)
 .timeWindow(Time.seconds(15))
 .aggregate(new AvgTempFunction)

// An AggregateFunction to compute the average temperature per sensor.
// The accumulator holds the sum of temperatures and an event count.
class AvgTempFunction extends AggregateFunction [(String, Double), (String, Double, Int), (String, Double)]
{
 override def createAccumulator() = { ("", 0.0, 0)}

 override def add(in: (String, Double), acc: (String, Double, Int)) = {
 (in._1, in._2 + acc._2, 1 + acc._3)
 }

 override def getResult(acc: (String, Double, Int)) = { (acc._1, acc._2 / acc._3) }

 override def merge(acc1: (String, Double, Int), acc2: (String, Double, Int)) = {
 (acc1._1, acc1._2 + acc2._2, acc1._3 + acc2._3)
 }
}

21

AggregateFunction example

Input type
Accumulator

type Output type

Initialization

Vasiliki Kalavri | Boston University 2021

val avgTempPerWindow: DataStream[(String, Double)] = sensorData
 .map(r => (r.id, r.temperature))
 .keyBy(_._1)
 .timeWindow(Time.seconds(15))
 .aggregate(new AvgTempFunction)

// An AggregateFunction to compute the average temperature per sensor.
// The accumulator holds the sum of temperatures and an event count.
class AvgTempFunction extends AggregateFunction [(String, Double), (String, Double, Int), (String, Double)]
{
 override def createAccumulator() = { ("", 0.0, 0)}

 override def add(in: (String, Double), acc: (String, Double, Int)) = {
 (in._1, in._2 + acc._2, 1 + acc._3)
 }

 override def getResult(acc: (String, Double, Int)) = { (acc._1, acc._2 / acc._3) }

 override def merge(acc1: (String, Double, Int), acc2: (String, Double, Int)) = {
 (acc1._1, acc1._2 + acc2._2, acc1._3 + acc2._3)
 }
}

21

AggregateFunction example

Input type
Accumulator

type Output type

Initialization

Accumulate one element

Vasiliki Kalavri | Boston University 2021

val avgTempPerWindow: DataStream[(String, Double)] = sensorData
 .map(r => (r.id, r.temperature))
 .keyBy(_._1)
 .timeWindow(Time.seconds(15))
 .aggregate(new AvgTempFunction)

// An AggregateFunction to compute the average temperature per sensor.
// The accumulator holds the sum of temperatures and an event count.
class AvgTempFunction extends AggregateFunction [(String, Double), (String, Double, Int), (String, Double)]
{
 override def createAccumulator() = { ("", 0.0, 0)}

 override def add(in: (String, Double), acc: (String, Double, Int)) = {
 (in._1, in._2 + acc._2, 1 + acc._3)
 }

 override def getResult(acc: (String, Double, Int)) = { (acc._1, acc._2 / acc._3) }

 override def merge(acc1: (String, Double, Int), acc2: (String, Double, Int)) = {
 (acc1._1, acc1._2 + acc2._2, acc1._3 + acc2._3)
 }
}

21

AggregateFunction example

Input type
Accumulator

type Output type

Initialization

Accumulate one element
Compute the

result

Vasiliki Kalavri | Boston University 2021

val avgTempPerWindow: DataStream[(String, Double)] = sensorData
 .map(r => (r.id, r.temperature))
 .keyBy(_._1)
 .timeWindow(Time.seconds(15))
 .aggregate(new AvgTempFunction)

// An AggregateFunction to compute the average temperature per sensor.
// The accumulator holds the sum of temperatures and an event count.
class AvgTempFunction extends AggregateFunction [(String, Double), (String, Double, Int), (String, Double)]
{
 override def createAccumulator() = { ("", 0.0, 0)}

 override def add(in: (String, Double), acc: (String, Double, Int)) = {
 (in._1, in._2 + acc._2, 1 + acc._3)
 }

 override def getResult(acc: (String, Double, Int)) = { (acc._1, acc._2 / acc._3) }

 override def merge(acc1: (String, Double, Int), acc2: (String, Double, Int)) = {
 (acc1._1, acc1._2 + acc2._2, acc1._3 + acc2._3)
 }
}

21

AggregateFunction example

Input type
Accumulator

type Output type

Initialization

Accumulate one element
Compute the

result

Merge two partial
accumulators

Vasiliki Kalavri | Boston University 2021

Use the ProcessWindowFunction to perform arbitrary computations on
the contents of a window:

• The process() method is called with the key of the window, an
Iterable to access the elements of the window, and a Collector to
emit results.

• A Context gives access to the metadata of the window (start and end
timestamps in the case of a time window), the current processing time
and the watermark.

ProcessWindowFunction

22

Vasiliki Kalavri | Boston University 2021

public abstract class ProcessWindowFunction<IN, OUT, KEY, W extends Window>
 extends AbstractRichFunction {

 // Evaluates the window
 void process(
 KEY key, Context ctx, Iterable<IN> vals, Collector<OUT> out) throws Exception;

 public abstract class Context implements Serializable {

 // Returns the metadata of the window
 public abstract W window();

 // Returns the current processing time
 public abstract long currentProcessingTime();

 // Returns the current event-time watermark
 public abstract long currentWatermark();
 }
}

23

ProcessWindowFunction interface

Vasiliki Kalavri | Boston University 2021

public abstract class ProcessWindowFunction<IN, OUT, KEY, W extends Window>
 extends AbstractRichFunction {

 // Evaluates the window
 void process(
 KEY key, Context ctx, Iterable<IN> vals, Collector<OUT> out) throws Exception;

 public abstract class Context implements Serializable {

 // Returns the metadata of the window
 public abstract W window();

 // Returns the current processing time
 public abstract long currentProcessingTime();

 // Returns the current event-time watermark
 public abstract long currentWatermark();
 }
}

23

ProcessWindowFunction interface

Iterate over the window contents

Vasiliki Kalavri | Boston University 2021

public abstract class ProcessWindowFunction<IN, OUT, KEY, W extends Window>
 extends AbstractRichFunction {

 // Evaluates the window
 void process(
 KEY key, Context ctx, Iterable<IN> vals, Collector<OUT> out) throws Exception;

 public abstract class Context implements Serializable {

 // Returns the metadata of the window
 public abstract W window();

 // Returns the current processing time
 public abstract long currentProcessingTime();

 // Returns the current event-time watermark
 public abstract long currentWatermark();
 }
}

23

ProcessWindowFunction interface

Get start and end timestamps

Iterate over the window contents

Vasiliki Kalavri | Boston University 2021

input stream
window
assigner

...

trigger

evictor evaluation
function

result stream

Custom windows

24

Vasiliki Kalavri | Boston University 2021

Advanced transformation functions used to implement custom logic for
which predefined windows and transformations might not be suitable:

• they provide access to record timestamps and watermarks

• they can register timers that trigger at a specific time in the future

ProcessFunction, KeyedProcessFunction, CoProcessFunction,
ProcessJoinFunction, BroadcastProcessFunction,
KeyedBroadcastProcessFunction, ProcessWindowFunction, and
ProcessAllWindowFunction.

Process Functions

25

Vasiliki Kalavri | Boston University 2021

The KeyedProcessFunction is applied to a KeyedStream:

• processElement(v: IN, ctx: Context, out: Collector[OUT]) is called for
each record of the stream. Result records are emitted by passing them to the
Collector. The Context object gives access to the timestamp and the key of the
current record and to a TimerService.

• onTimer(timestamp: Long, ctx: OnTimerContext, out: Collector[OUT])
is invoked when a previously registered timer triggers. The timestamp argument gives the
timestamp of the firing timer and the Collector allows emitting records. The
OnTimerContext provides the same services as the Context object of the
processElement() method and also returns the time domain (processing time or event
time) of the firing timer.

26

KeyedProcessFunction

Vasiliki Kalavri | Boston University 2021

val warnings = readings
 .keyBy(_.id) // key by sensor id
 .process(new TempIncreaseAlertFunction) // apply ProcessFunction to monitor temperatures

/** Emits a warning if the temperature of a sensor monotonically increases for 1 second (in processing time) **/
class TempIncreaseAlertFunction extends KeyedProcessFunction[String, SensorReading, String] {

 // stores temperature of last sensor reading
 val lastTemp: Double
 // stores timestamp of currently active timer
 val currentTimer: Long

 override def processElement(r: SensorReading, ctx:Context, out: Collector[String]): Unit = {
 // get previous temperature
 val prevTemp = lastTemp
 // update last temperature
 lastTemp = r.temperature

 if (prevTemp == 0.0 || r.temperature < prevTemp) {
 // temperature decreased; delete current timer
 ctx.timerService().deleteProcessingTimeTimer(curTimer)
 } else if (r.temperature > prevTemp && curTimerTimestamp == 0) {
 // temperature increased and we have not set a timer yet: set processing time timer for now + 1 second
 val timerTs = ctx.timerService().currentProcessingTime() + 1000
 ctx.timerService().registerProcessingTimeTimer(timerTs)
 // remember current timer
 currentTimer = timerTs
 }
 }
}

ProcessFunction example

27

Vasiliki Kalavri | Boston University 2021

override def onTimer(
 ts: Long,
 ctx: OnTimerContext,
 out: Collector[String]): Unit = {

 out.collect("Temperature of sensor '" + ctx.getCurrentKey +
 "' monotonically increased for 1 second.")

 currentTimer.clear()
 }
}

onTimer() example

28

Vasiliki Kalavri | Boston University 2021

For low-level operations on two inputs:

• One transformation method for each input processElement1() and
processElement2()

• Both methods are called with a Context object that gives access to the
element or timer timestamp and a TimerService

• You can use it to register timers and it provides an onTimer() callback
method

CoProcess Function

29

Vasiliki Kalavri | Boston University 2021

val forwardedReadings = readings
 // connect readings and switches
 .connect(filterSwitches)
 // key by sensor ids
 .keyBy(_.id, _._1)
 // apply filtering CoProcessFunction
 .process(new ReadingFilter)

CoProcessFunction example

30

Vasiliki Kalavri | Boston University 2021

val forwardedReadings = readings
 // connect readings and switches
 .connect(filterSwitches)
 // key by sensor ids
 .keyBy(_.id, _._1)
 // apply filtering CoProcessFunction
 .process(new ReadingFilter)

CoProcessFunction example

30

Key for the readings
stream

Vasiliki Kalavri | Boston University 2021

val forwardedReadings = readings
 // connect readings and switches
 .connect(filterSwitches)
 // key by sensor ids
 .keyBy(_.id, _._1)
 // apply filtering CoProcessFunction
 .process(new ReadingFilter)

CoProcessFunction example

30

Key for the readings
stream Key for the

filterSwitches stream

Vasiliki Kalavri | Boston University 2021

class ReadingFilter
extends CoProcessFunction[SensorReading, (String, Long), SensorReading] {

 // process readings
 override def processElement1(reading: SensorReading,ctx: Context, out:
 Collector[SensorReading]): Unit = {…}

 // process switches
 override def processElement2(switch: (String, Long),ctx: Context, out:
 Collector[SensorReading]): Unit = {…}

 // process timers
 override def onTimer(ts: Long, ctx: OnTimerContext, out:
 Collector[SensorReading]): Unit = {…}
}

CoProcessFunction example

31

🤧😷🤒 Vasiliki Kalavri | Boston University 2021

• Li, Jin, et al. "Semantics and evaluation techniques for window
aggregates in data streams." Proceedings of the 2005 ACM SIGMOD
international conference on Management of data. 2005.

• Tangwongsan, Kanat, et al. "General incremental sliding-window
aggregation." Proceedings of the VLDB Endowment 8.7 (2015): 702-713.

• Li, Jin, et al. "No pane, no gain: efficient evaluation of sliding-window
aggregates over data streams." Acm Sigmod Record 34.1 (2005):
39-44.

• Traub, Jonas, et al. "Efficient Window Aggregation with General
Stream Slicing." EDBT. 2019.

32

References

