
Vasiliki Kalavri | Boston University 2021

Vasiliki (Vasia) Kalavri 
vkalavri@bu.edu 

CS 591 K1: 
Data Stream Processing and Analytics

Spring 2021 
Window aggregation

mailto:vkalavri@bu.edu
mailto:vkalavri@bu.edu


Vasiliki Kalavri | Boston University 2021

Window operators

2



Vasiliki Kalavri | Boston University 2021

• Practical way to perform operations on unbounded input

• e.g. joins, holistic aggregates

Window operators

2



Vasiliki Kalavri | Boston University 2021

• Practical way to perform operations on unbounded input

• e.g. joins, holistic aggregates

• Compute on most recent events only

• when providing real-time traffic information, you probably don't care about an accident that 

happened 2 hours ago

Window operators

2



Vasiliki Kalavri | Boston University 2021

• Practical way to perform operations on unbounded input

• e.g. joins, holistic aggregates

• Compute on most recent events only

• when providing real-time traffic information, you probably don't care about an accident that 

happened 2 hours ago

• Recent might mean different things

• last 5 sec

• last 10 events

• last 1h every 10 min

• last user session

Window operators
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Window operators can be applied on a keyed or a non-keyed stream:

• Window operators on keyed windows are evaluated in parallel

• Non-keyed windows are processed in a single thread


To create a window operator, you need to specify two window components: 


• A window assigner determines how the elements of the input stream are 
grouped into windows. 


• A window function is applied on the window contents and processes the 
elements assigned to each window.
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The window type defines the logic based on which we derive finite windows from 
a continuous stream of events:


•Tumbling (fixed) windows split time into segments of equal length l. The end of 
a window marks the start of the next one.

• Each event belongs to one window only.


•Sliding (hopping) windows further define a slide parameter ls which determines 
how often a new window starts. Consecutive windows overlap when ls < l.

• Events may belong to multiple windows.


•Session windows define a period of activity followed by a period of inactivity. A 
session window ends if no event arrives for some time gap lg.
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a period of activity followed by a period of inactivity

session gap
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Session windows
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We can define windows based on multiple (monotonically increasing) 
measures: 

• Time, such as event or processing time 
• Count, i.e. number of events 
• Data-dependent advancing measure, such as a punctuation or other signal in the stream 

• e.g. when the amount of bids placed for an action exceeds a threshold 

We can mix windowing measures to define multi-measure windows 
• e.g. output the last 10 tuples (count) every 5 second (time).
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Window aggregation functions define the computation we perform on the 
elements of a window. 

• Distributive functions: final values can be computed as the 
aggregation of partial aggregates with constant size. 

• min, max, sum 

• Algebraic functions: final values can be computed by applying a 
function on partial aggregates of fixed size. 

• average, N largest values 

• Holistic functions: partial aggregates have an unbounded size 
• median, most frequent, rank

9

Window aggregation functions
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We divide windows into 3 classes with regard to the context we need in 
order to know where windows start and end: 

• Context Free (CF) windows are those for which we can compute their boundaries without 
processing any tuples. 

• Tumbling and sliding windows are context-free as we can compute all start and end 
timestamps based on their length and slide parameters. 

• Forward Context Free (FCF) windows are those which depend on punctuations. We can 
compute their boundaries once we have processed all events up to a timestamp t. 

• Forward Context Aware (FCA) windows require us to process tuples after timestamp t in 
order to compute all window boundaries before t. 

• Multi-measure windows are FCA.
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Window evaluation
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A window operator is responsible for grouping incoming records  into  windows  
and  making  the  evaluation  function results available in the output whenever a 
window triggers, i.e. when the system’s notion of time arrives at its end timestamp.  

Evaluation functions can be applied eagerly, upon receiving a new record that 
belongs to the window, or lazily, on trigger. 

Regardless of the strategy used, the operator performs two types of processing:   
(i) upon receiving a new event in its input, the operator needs decide how to assign 
the event to one or more windows and possibly apply some partial aggregation. 
(ii) upon receiving a trigger, the operator needs to decide which windows are 
“complete”, apply the final aggregation, and produce results. 

12
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Use a buffer to store incoming events, ordered  
by  timestamp. 

On event: Append to the end of the buffer. 

On trigger: Retrieve all records whose 
timestamp falls inside the window bounds. 

The number of records in the buffer is 
proportional to the window size and input rate, 
thus, state requirements can grow significantly 
for high input rates and large windows.  

The evaluation function is applied to the window 
contents lazily at trigger time. 
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Record buffer

window size
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Record buffer

window size

• General strategy which can 
support all window types and 
aggregation functions. 

• Evaluation can be inefficient for 
out-of-order streams (memory 
copies), high rate (increasing 
state), and overlapping windows 
(multiple aggregate computations). 
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Use a binary tree to store partial 
aggregates on top of stream events. 

On event: Insert to the binary tree and 
update all affected partial aggregates. 

On trigger: Combine partial aggregated to 
compute and emit the final value. 

The state requirements are high as both 
events and partial aggregates are 
maintained.  

The evaluation function is applied on event 
and on trigger.
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Aggregate tree
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Aggregate tree

• Partial aggregates can be shared 
across overlapping windows. 

• Memory copy for out-of-order events or 
tree re-balancing. 

• Low-latency trigger as final aggregates 
can be computed by combining the 
pre-computed partial aggregates.

window size
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Organize events into windows by assigning them IDs 
(start or  end  timestamp). 

On event: An assigner function computes a list of at 

most  window IDs the record belongs to. The event 

is inserted to each window in the list.  

On  trigger:  Window contents are retrieved using the ID.  

This strategy has low state requirements when the  
evaluation function is associative and commutative and 
can be eagerly applied on record arrival.   

If the window slide is much smaller than the window 
length, successive windows have large overlap, resulting 
to redundant computations and high state requirements.

⌈
l
ls

⌉
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Window ID (Bucket)

• Low latency on trigger if aggregation 
can be computed eagerly. 

• Redundancy, high memory 
requirements, and high latency on 
event (many assignments) for 
overlapping windows.
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Organize events into smaller units, called panes.  

A pane is the maximum shareable unit across windows and its 
size is computed as .  

This guarantees that a record belongs to only one pane and that 
every window can be composed by a set of consecutive panes.  

On event: An assigner function computes the pane ID and adds 
the record to its state. 

On trigger: Retrieve  panes to assemble the window contents. 

If the evaluation function supports pre-aggregation, it can be 
eagerly applied on record arrival to maintain partially aggregated 
results per pane.   

The final aggregate is computed by combining the partial 
aggregates on trigger.

lp = gcd(l, ls)

l
lp
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Window Slicing

• Low state requirements and low 
latency on trigger. 

• When the window length is a 
multiple of the window slide, results 
can be shared across windows.
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Flink window functions
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Window functions define the computation that is performed on the elements 
of a window

• Incremental aggregation functions are applied when an element is 

added to a window:

• They maintain a single value as window state and eventually emit the 

aggregated value as the result.

• ReduceFunction and AggregateFunction


• Full window functions collect all elements of a window and iterate over 
the list of all collected elements when evaluated:

• They require more space but support more complex logic.

• ProcessWindowFunction

Window functions

18
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val minTempPerWindow: DataStream[(String, Double)] = sensorData
    .map(r => (r.id, r.temperature))
    .keyBy(_._1)
    .timeWindow(Time.seconds(15))
    .reduce((r1, r2) => (r1._1, r1._2.min(r2._2)))

19

ReduceFunction example
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ReduceFunction example

The function is evaluated for every 
element entering the window

Input and output types 
must be the same
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public interface AggregateFunction<IN, ACC, OUT> extends Function, 
Serializable {

    // create a new accumulator to start a new aggregate.
    ACC createAccumulator();

    // add an input element to the accumulator and return the accumulator.
    ACC add(IN value, ACC accumulator);

    // compute the result from the accumulator and return it.
    OUT getResult(ACC accumulator);

    // merge two accumulators and return the result.
    ACC merge(ACC a, ACC b);

}

20

AggregateFunction interface
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val avgTempPerWindow: DataStream[(String, Double)] = sensorData
    .map(r => (r.id, r.temperature))
    .keyBy(_._1)
    .timeWindow(Time.seconds(15))
    .aggregate(new AvgTempFunction)

// An AggregateFunction to compute the average temperature per sensor.
// The accumulator holds the sum of temperatures and an event count.
class AvgTempFunction extends AggregateFunction [(String, Double), (String, Double, Int), (String, Double)] 
{
    override def createAccumulator() = { ("", 0.0, 0)}

    override def add(in: (String, Double), acc: (String, Double, Int)) = {
        (in._1, in._2 + acc._2, 1 + acc._3)
    }

    override def getResult(acc: (String, Double, Int)) = { (acc._1, acc._2 / acc._3) }

    override def merge(acc1: (String, Double, Int), acc2: (String, Double, Int)) = {
        (acc1._1, acc1._2 + acc2._2, acc1._3 + acc2._3)
    }
}

21

AggregateFunction example



Vasiliki Kalavri | Boston University 2021

val avgTempPerWindow: DataStream[(String, Double)] = sensorData
    .map(r => (r.id, r.temperature))
    .keyBy(_._1)
    .timeWindow(Time.seconds(15))
    .aggregate(new AvgTempFunction)

// An AggregateFunction to compute the average temperature per sensor.
// The accumulator holds the sum of temperatures and an event count.
class AvgTempFunction extends AggregateFunction [(String, Double), (String, Double, Int), (String, Double)] 
{
    override def createAccumulator() = { ("", 0.0, 0)}

    override def add(in: (String, Double), acc: (String, Double, Int)) = {
        (in._1, in._2 + acc._2, 1 + acc._3)
    }

    override def getResult(acc: (String, Double, Int)) = { (acc._1, acc._2 / acc._3) }

    override def merge(acc1: (String, Double, Int), acc2: (String, Double, Int)) = {
        (acc1._1, acc1._2 + acc2._2, acc1._3 + acc2._3)
    }
}

21

AggregateFunction example

Input type
Accumulator 

type Output type
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Use the ProcessWindowFunction to perform arbitrary computations on 
the contents of a window:


• The process() method is called with the key of the window, an 
Iterable to access the elements of the window, and a Collector to 
emit results. 


• A Context gives access to the metadata of the window (start and end 
timestamps in the case of a time window), the current processing time 
and the watermark.

ProcessWindowFunction

22
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public abstract class ProcessWindowFunction<IN, OUT, KEY, W extends Window>
    extends AbstractRichFunction {

    // Evaluates the window
    void process(
        KEY key, Context ctx, Iterable<IN> vals, Collector<OUT> out) throws Exception;

    public abstract class Context implements Serializable {
    
        // Returns the metadata of the window
        public abstract W window();

        // Returns the current processing time
        public abstract long currentProcessingTime();

        // Returns the current event-time watermark
        public abstract long currentWatermark();
   }
}

23

ProcessWindowFunction interface
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Iterate over the window contents
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ProcessWindowFunction interface

Get start and end timestamps

Iterate over the window contents
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input stream
window 
assigner

...

trigger

evictor evaluation 
function

result stream

Custom windows
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Advanced transformation functions used to implement custom logic for 
which predefined windows and transformations might not be suitable:

• they provide access to record timestamps and watermarks

• they can register timers that trigger at a specific time in the future


ProcessFunction, KeyedProcessFunction, CoProcessFunction, 
ProcessJoinFunction, BroadcastProcessFunction, 
KeyedBroadcastProcessFunction, ProcessWindowFunction, and 
ProcessAllWindowFunction.

Process Functions

25
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The KeyedProcessFunction is applied to a KeyedStream:


• processElement(v: IN, ctx: Context, out: Collector[OUT]) is called for 
each record of the stream. Result records are emitted by passing them to the 
Collector. The Context object gives access to the timestamp and the key of the 
current record and to a TimerService.


• onTimer(timestamp: Long, ctx: OnTimerContext, out: Collector[OUT]) 
is invoked when a previously registered timer triggers. The timestamp argument gives the 
timestamp of the firing timer and the Collector allows emitting records. The 
OnTimerContext provides the same services as the Context object of the 
processElement() method and also returns the time domain (processing time or event 
time) of the firing timer.

26

KeyedProcessFunction
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val warnings = readings
    .keyBy(_.id) // key by sensor id
    .process(new TempIncreaseAlertFunction) // apply ProcessFunction to monitor temperatures

/** Emits a warning if the temperature of a sensor monotonically increases for 1 second (in processing time) **/
class TempIncreaseAlertFunction extends KeyedProcessFunction[String, SensorReading, String] {

    // stores temperature of last sensor reading
    val lastTemp: Double
    // stores timestamp of currently active timer
    val currentTimer: Long

    override def processElement(r: SensorReading, ctx:Context, out: Collector[String]): Unit = {
        // get previous temperature
        val prevTemp = lastTemp
        // update last temperature
        lastTemp = r.temperature

        if (prevTemp == 0.0 || r.temperature < prevTemp) {
            // temperature decreased; delete current timer
            ctx.timerService().deleteProcessingTimeTimer(curTimer)
        } else if (r.temperature > prevTemp && curTimerTimestamp == 0) {
            // temperature increased and we have not set a timer yet: set processing time timer for now + 1 second
            val timerTs = ctx.timerService().currentProcessingTime() + 1000
            ctx.timerService().registerProcessingTimeTimer(timerTs)
        // remember current timer
        currentTimer = timerTs
        }
    }
}

ProcessFunction example

27
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override def onTimer(
    ts: Long,
    ctx: OnTimerContext,
    out: Collector[String]): Unit = {
    
        out.collect("Temperature of sensor '" + ctx.getCurrentKey +
            "' monotonically increased for 1 second.")

        currentTimer.clear()
    }
}

onTimer() example

28
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For low-level operations on two inputs:

• One transformation method for each input processElement1() and 
processElement2()


• Both methods are called with a Context object that gives access to the 
element or timer timestamp and a TimerService


• You can use it to register timers and it provides an onTimer() callback 
method

CoProcess Function

29
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val forwardedReadings = readings
    // connect readings and switches
    .connect(filterSwitches)
    // key by sensor ids
    .keyBy(_.id, _._1)
    // apply filtering CoProcessFunction
    .process(new ReadingFilter)

CoProcessFunction example

30
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CoProcessFunction example

30

Key for the readings 
stream
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val forwardedReadings = readings
    // connect readings and switches
    .connect(filterSwitches)
    // key by sensor ids
    .keyBy(_.id, _._1)
    // apply filtering CoProcessFunction
    .process(new ReadingFilter)

CoProcessFunction example

30

Key for the readings 
stream Key for the 

filterSwitches stream
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class ReadingFilter
extends CoProcessFunction[SensorReading, (String, Long), SensorReading] {

    // process readings
    override def processElement1(reading: SensorReading,ctx: Context, out:     
        Collector[SensorReading]): Unit = {…}

    // process switches
    override def processElement2(switch: (String, Long),ctx: Context, out: 
        Collector[SensorReading]): Unit = {…}

    // process timers
    override def onTimer(ts: Long, ctx: OnTimerContext, out:
        Collector[SensorReading]): Unit = {…}
}

CoProcessFunction example

31
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